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Many scientific problems can be formulated in terms of conservation laws and rates of changes, which

can be mathematically represented as systems of Partial Differential Equations (PDEs). However, the

inherent scale and complexity of these systems of PDEs present formidable obstacles when attempting

to solve them using conventional computational approaches, including mesh-based algorithms like the

Finite Element Method. As a result, finding solutions for such systems often becomes arduous or

even intractable. Quantum Scientific Machine Learning (QSciML) has recently emerged as a new

paradigm to solve complex problems in science and engineering, including the solution of intricate

Partial Differential Equations.

A prominent method proposed for solving PDEs involves the utilization of Differentiable Quantum

Circuits (DQCs), as introduced by Kyriienko et al. in their work [1]. This approach draws inspiration

from Physics-Informed Neural Networks (PINNs), which employ classical Neural Networks (NNs) to

represent the solution to the PDE system. DQC extends this concept by incorporating quantum

NNs (QNNs). By leveraging QNNs, DQC offers the potential for a spectral basis-set size that can

scale exponentially with the number of qubits, enabling accurate fitting of solutions even in higher-

dimensional problems, while remaining compatible with near-term quantum processors. Herein we

follow a pragmatic approach by analysing different aspects of the DQC algorithm and providing

insights regarding its scalability and applicability.

Our study focuses on examining the impact of various feature maps utilized to encode the data into

the quantum circuit, along with different Ansaetze choices for the QNN. We put emphasis on digital-

analog architectures as they are particularly suitable for near-term quantum devices such as PASQAL’s

neutral atoms quantum computers. Additionally, we address trainability considerations, building

upon previous research on the analysis of the loss function landscape in QNNs [2]. By investigating

the loss landscape we aim to gain valuable insights into the well-known barren plateau problem.

This problem arises when the gradient of the loss function becomes exponentially small, resulting

in gradient-based optimization techniques becoming computationally infeasible. Our analysis of the

DQC loss landscape sheds light on strategies to overcome this challenge, including the exploration of

initialization techniques [3] that mitigate the effects of the barren plateau problem.

To demonstrate the developments and the applicability of the method we utilize an industrially relevant

use case, namely the computational simulation of electrical Li-ion battery devices [4], where systems

of PDEs are used to describe the dynamics of the electrical potentials, currents and mass transport

within the battery. We show the effect of our techniques in a relatively simple computational battery

model and we highlight the expectation for future development.
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