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• We solve the Single Particle Model[2] (SPM) 
for a Lithium-ion (Li-ion) battery. The SPM is a 
simple full-battery model that captures the 
basic physics of the battery.

• DQC achieves slightly better performance 
than the classical PINN with approximately 
1/3 of the trainable parameters (48 in DQC vs 
141 in classical PINN).

DQC is a hybrid quantum-classical algorithm that can 
be used to solve differential equations. It prepares 
trial solutions encoded in the expectation value of an 
observable in the QNN, which is trained to minimize a 
loss function with a classical optimizer. Its main 
components are:
• The feature map (FM) encoding. Input data is 

encoded in the quantum circuit via a non-linear 
quantum feature map, avoiding amplitude 
encoding. The FM derivatives can be exactly 
calculated through automatic differentiation, 
circumventing approximation errors of numerical 
differentiation.

• The Quantum Neural Network (QNN) containing 
the trainable parameters. The solution is encoded 
as the expectation value of an observable.

• The loss function that measures the quality of the 
solution generated by the quantum circuit. When 
solving PDE systems, the loss function measures 
how well the PDE, and boundary conditions terms 
are satisfied.

In this work we employ a 4-qubit quantum circuit w. 
Data is encoded with a Chebyshev feature map and 
the variational circuit consists of 4 layers of a 
Hardware-Efficient Ansatz (HEA) which is trained with 
the ADAM optimizer. We use the average Z-
magnetization of the qubits as the cost operator.

In this work we demonstrate the use of a hybrid quantum-classical algorithm for solving systems of Partial Differential Equations relevant 
to the battery simulation problem. We show that the algorithm is able to achieve accurate solutions and we study the curvature of the loss 
landscape of the problem via the Hessian eigenspectrum, also performing a comparison of different optimizers.
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Discharge-curve at constant-current with a C-rate of 1.5C. Voltage 
difference is calculated with respect to the FVM solution.
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• Many scientific problems can be formulated as systems of Partial Differential Equations (PDEs). Quantum Scientific Machine Learning (QSciML) is 
an emerging field offering an alternative approach to conventional mesh-based PDE solvers. Differentiable Quantum Circuits[1] (DQCs) is a QSciML 
algorithm which draws inspiration from Physics-Informed Neural Networks (PINNs), encoding the solution to the PDE system in a Quantum Neural 
Network (QNN) instead of a classical NN. DQC offers the potential for a spectral basis-set size that can scale exponentially with the number of 
qubits, enabling accurate fitting of solutions even in higher-dimensional problems, while remaining  NISQ-compatible.

• We benchmark the DQC algorithm with a relevant industrial use case, namely solving a standard computational battery model known as the Single 
Particle Model[2]. We show that DQC is able to obtain accurate solutions with a relatively small QNN, and we compare it with a classical NN and the 
Finite Volume Method. The local curvature of the loss landscape around the minima is studied via the lens of the Hessian eigenspectrum and the 
performance of different optimizers is compared, showing that Quantum Natural Gradient-based optimizers[3] that take in account the geometry of 
the parameter space perform very well compared to conventional optimizers.

Eigenvalues of the Hessian      during training with the 
QNG optimizer, calculated as the second derivative of the 

loss     . Convergence is achieved after ~20 iterations.

• Move towards more complex battery models such as the Doyler-Fuller-Newmann[1] 
(DFN) model, including physical phenomena such as the electrolyte dynamics or 
thermal and ageing processes.

• More detailed study of the algorithmic components of DQC and their relation to the 
trainability of the DQC algorithm, such as different feature map encodings or 
alternative quantum models (e.g. quantum kernel methods).

• Adaptation of the quantum circuits to a digital-analog approach.

Convergence comparison among different optimizers. QNG 
updates the parameters through the inverse of the 

Quantum Fisher Information  .

• The loss landscape of Quantum Neural Networks has been shown to be highly non-convex[4] 
in supervised learning tasks, but little is known for the Physics-Informed QML paradigm.

• We use the Hessian eigenspectrum to learn about the local curvature of the loss landscape. 
We observe that close to the minimum, most of the eigenvalues are zero with a few positive 
outliers, indicating that the minimum is a flat pool with a few steep directions.

• We find that for DQC, standard gradient-descent (GD) methods converge very slowly 
compared to the Quantum Natural Gradient (QNG), which takes into account the geometry 
of the parameter space. We also test a SPSA approximation[3] to the QNG only requiring a 
O(1) overhead in circuit evaluations compared to GD.
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