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Abstract

The simulation of chemical systems and reactions is a central problem relevant to many ar-
eas of knowledge. Although a great variety of classical methods to simulate chemistry have
been developed providing remarkable accuracy, some systems seem to remain intractable with
classical computers. Quantum computing, on the other hand, has arised as a tool that could
potentially deliver more efficient algorithms to solve relevant problems in quantum chemistry,
such as the electronic structure problem. The goal of this thesis is two-fold. First, we review
the three main models of quantum computation - Digital (DQC), Analog (AQC) and Adiabatic
(AdQC) Quantum Computation - and their applications to quantum chemistry. Secondly, we
study a recently proposed quantum computation approach which combines DQC and AQC,
namely Digital-Analog Quantum Computation (DAQC). We use the DAQC model to simulate
two small molecules, H2 and HeH+, showing that the DAQC approach outperforms the DQC
for a variety of cases. We conclude by providing an overview of strategies to genelize the DAQC
paradigm for larger molecules.

The code corresponding to the numerical simulations of this work
can be consulted in this repository.

https://gitlab.tudelft.nl/qmai/master-theses/ignaciofernandezgrana
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1
Introduction

The simulation of quantum many-body systems is a central topic in a great variety of scien-
tific fields. A particularly relevant quantum many-body system are molecules, which are the
building blocks of most of the matter around us. Chemistry has long sought to understand
how molecules, made of interacting nuclei and electrons, are formed, as well as how they in-
teract with each others to make compounds. Understanding the properties of molecules and
their reactions is a problem with applications in many fields of research, from drug discovery
to materials science, medicine and energy. The birth of quantum mechanics in the early 20th
century allowed for a more accurate description of molecular systems, giving rise to a new field
of study known as quantum chemistry.

Soon after the birth of quantum mechanics, another technological revolution took place in the
mid-20th century: the first electronic computers. Computers have had a major impact in every
aspect of our society, and science, including chemistry, has greatly evolved as a consequence
of the increase in our computational power. Very accurate and complex algorithms have been
developed to solve quantum chemistry problems with electronic computers [1–3], providing
excellent results in a great variety of cases. Nevertheless, electronic computers, which we will
refer as classical computers, present some serious limitations when dealing with the simulation
of quantum many-body systems [4]. One of the major challenges is that the size of the exact
wavefunction of these systems grows exponentially with the number of particles, which makes
it unfeasible to simulate systems of such kind for even moderate sizes.

An important class of systems where classical methods tend to fail are systems which are de-
scribed by wavefunctions with a high degree of entanglement, commonly known as strongly
correlated systems. Some relevant examples of these systems are high temperature supercon-
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ductors or catalysts such as the enzyme nitrogenase, responsible for the process of nitrogen
fixation. Nitrogen fixation [5] is the process of converting the non-reactive dinitrogen (N2) in
the atmosphere into more reactive compounds such as nitrates or ammonia (NH3). Chemically
speaking, this involves splitting the triple bond in N2 to reduce it to NH3. Nitrogen fixation
is a key part of the manufacturing of fertilizer, and the main industrial method currently used
for nitrogen fixation is the Haber process, developed in the early 1900s. The Haber process
is very inefficient and energy-intensive, requiring very high temperatures and pressures, and
it consumes around 1-2% of the world’s energy supply [6]. On the other hand, there exists a
type of bacteria known to be able to biologically fix the nitrogen in an very energy-efficient
way, using the enzyme nitrogenase as a catalyst, at room temperature and pressure. However,
the primary cofactor of the enzyme nitrogenase, FeMoco, is far beyond the simulation capa-
bilities of our largest supercomputers, and the mechanism of nitrogen fixation at FeMoco is
not yet known. However, this problem could potentially be solved by an alternative form of
computation: quantum computation.

Recently, quantum computing have emerged as a novel form of computation based in the
principles of quantum mechanics [7]. Quantum computers are quantum mechanical systems that
can be initialized, controlled and measured to solve computational problems. The simulation
of quantum many-body systems, and in particular quantum chemistry, has been identified as
one of the first potential applications of quantum computers. Intuitively, it is natural to believe
that using a quantum system to simulate another quantum system is more efficient than using
classical computers, and quantum computers have been predicted to yield an advantage in many
fields. Nevertheless, there are only a few cases where a quantum advantage has been rigorously
proved, for example prime factorization using Shor’s quantum algorithm, or unstructured search
using Grover’s quantum search algorithm. Most of the arguments towards a possible quantum
advantage have been heuristic, specially in the near-term regime. This is partly due to the
challenges associated with constructing and simulating quantum computers.

The majority of current computers operate under the gate-based quantum computation model,
also refered to as Digital Quantum Computation (DQC). The basic unit of information in
DQC is the qubit, a two-level controllable quantum system with states |0⟩ and |1⟩. A gate-
based quantum computer consists of a register of n qubits, which can be acted upon with
a given set of elemental quantum operations, known as quantum gates. A digital quantum
algorithm is a series of quantum gates applied to the qubits, so that the system undergoes a
certain evolution, which must be unitary according to the principles of quantum mechanics.
We say that a quantum computer is universal if it is capable of implementing any arbitrary
unitary evolution. Digital quantum computers are universal if the native gates of the device
form a set of universal quantum gates.

There is currently not a preferred platform for the physical implementation of qubits, and many
technologies have been proposed, including superconducting circuits [8–10], trapped ions [11],
quantum dots [12], NV centers or photons [13], among others. Current digital quantum com-
puters are still in the early experimental stages, with only tens of low-quality qubits available.
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One major challenge shared by all of quantum hardware platforms is the difficulty to isolate
the quantum systems making up the qubits from the environment. This leads to high rates of
errors during the quantum computation, which severely limits the number of gates that can be
performed in the algorithms. Quantum error correction protocols [14, 15] can protect qubits
from errors, but at the expense of using a large number of qubits, which is unfeasible with the
current technology. We refer to current quantum computers, with few low-quality qubits and
no quantum error correction, as Noisy Intermediate Scale Quantum (NISQ) computers. Great
efforts have been made in the past years in the development of digital quantum algorithms for
quantum chemistry [16, 17] since the seminal work of Aspuru-Guzik et al. [18], both with the
near-term NISQ computers and with future fault-tolerant quantum computers with access to
quantum error correction. Today, there is optimism that quantum computers can solve more
efficiently many problems in quantum chemistry, and the scientific community is putting great
efforts towards designing new quantum algorithms with that goal.

Other paradigms of quantum computation beside the gate-based model have been developed
with remarkable results. In this work we review two other quantum computational models:
Analog Quantum Computation (AQC) and Adiabatic Quantum Computation (AdQC). Analog
quantum computers (also called analog quantum simulators) use a controllable quantum system
to simulate the physics of another less controllable quantum system [19]. An intuitive analogy
is the orreries built by the ancient greeks - mechanical devices used to mimic the movement
of celestial bodies [20]. The same way the orreries were designed to simulate the orbits of
the planets, analog quantum simulators are engineered to simulate the physics of a specific
quantum system. Quantum analog simulators typically present lower error rates and higher
precision than digital quantum computers. However, unlike digital quantum computers, analog
simulators are not universal in the sense that they cannot implement any unitary evolution.
Analog simulators are built to study a specific system, which makes them far less flexible
than digital quantum computers. Recent experiments with analog quantum simulators have
demonstrated a high accuracy and low errors in the study of quantum many-body system [21,
22], gravity [23, 24] or quantum chemistry [25], among others. Most of the physics models
that have been studied in analog simulators are limited to local systems with short range
interactions, as it turns out to be very challenging to engineer long range interactions in most
experimental platforms. However, molecules are strongly correlated systems with a long range
electron-electron coulombian repulsion, and thus a full simulation of the molecular electronic
structure has for long escaped analog simultations. In 2019, Argüello et al. [26] made the
first proposal of a scalable analog quantum simulation of quantum chemistry using ultracold
atoms in optical lattices. Although their proposal is still far beyond current state of the art
technology, their work sets the first stone on the path towards an analog simulation of chemical
systems.

The last quantum computing model we discuss is Adiabatic Quantum Computation (AdQC),
introduced by Farhi et al. in 2000 [27]. Adiabatic quantum computers work by evolving an
initial Hamiltonian, whose ground state is easy to prepare, to a more complex final Hamiltonian
whose ground state encodes the solution of the computational task [28, 29]. Therefore, AdQ is
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useful as long as we can encode the solution of the target problem into a Hamiltonian supported
by the quantum device [30–32]. To ensure that the system ends up in the ground state of the
final Hamiltonian, the evolution has to be sufficiently slow for the quantum adiabatic theorem
to hold. Currently, the type of Hamiltonians supported in the quantum devices are limited
to neighbours interactions. This poses a challenge for quantum chemistry applications, as the
electronic Hamiltonian of molecules has long range interactions. Hamiltonian gadgets are a tool
to reduce the locality of the Hamiltonian at a expense of ancilla qubits, and can be used to map
the electronic Hamiltonian into a local Hamiltonian. A protocol to solve the electronic structure
problem using adiabatic quantum computation and Hamiltonian gadgets was proposed in [33].
However, the number of ancilla qubits in this+ proposal scales with N4 log(N), where N is
the number of atomic orbitals required to describe the molecule, which is prohibitive for even
moderate size molecules in near term devices.

Although the various models of quantum computation discussed above - DQC, AQC and AdQC
- have for a long time evolved independently, recent proposals of hybrid algorithms combining
different models have been done. An example of this is digitized adiabatic quantum computing,
which combines the simplicity of the adiabatic algorithm with the flexibility of digital quantum
computers [10, 34]. In this work, we focus on a hybrid model combining digital and analog
quantum computation, which we refer to as Digital-Analog Quantum Computation (DAQC)
[35–44]. The DAQC model combines the universality of DQC with the robustness of AQC
against errors. It does so by substituting the two qubit gates with multi-qubit gates, which are
the main source of errors in digital quantum algorithms [45, 46], with blocks of analog evolution
of the interactions naturally present in the quantum hardware. In this work, we study the
DAQC protocol applied to the particular case of quantum chemistry. A main challenge towards
simulating quantum chemistry with the DAQC approach is the restricted locality of the natural
interactions in current devices, whereas the electronic Hamiltonian presents highly non-local
interactions due to the long-range electron-electron repulsion in the molecules. To circumvent
this issue, a mathematical tool widely used in AdQC known as Hamiltonian gadgets [33, 47,
48] can be used. Hamiltonian gadgets work by adding auxiliary qubits to a quantum device
with restricted connectivity so that the local Hamiltonian of the device simulates the non-local
Hamiltonian we want to simulate.

We study the DAQC approach in small molecules that can be mapped into two-qubits, namely
H2 and HeH+. We show these molecules can be straightforwardly mapped into a locally-
connected quantum device. For these two molecules, we benchmark the DAQC, for two different
tasks: finding the electronic ground state of the molecule and calculating the time dynamics of
the molecule. For the ground state calculation, we use the Variational Quantum Eigensolver
(VQE), a variational quantum algorithm widely used to prepare ground states of quantum
many-body systems, among other tasks. On the other hand, to study the time dynamics
of the molecule, we consider the time evolution of the electronic Hamiltonian using Trotter
product formulas, an approximation commonly used in Hamiltonian simulation. We study these
algorithms under the presence of noise, and find that the DAQC approach is more resilient
to noise than the standard DQC model. However, further work is required to scale up the
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simulation of quantum chemistry via the DAQC to larger molecules.
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2
Quantum Chemistry

This chapter aims to briefly review the basics concepts of classical computational quantum
chemistry. We begin, in Section 2.1, by giving an overview of the central problem in quantum
chemistry, the electronic structure problem. In Section 2.2 we discuss how can the Hamiltonian
of a molecule be encoded in a computer via the second quantized formalism. Last, Section 2.3
reviews the most common classical computational methods in quantum chemistry, mainly the
Hartree-Fock method.

2.1 Overview

Quantum chemistry aims to understand the properties of molecules by using the formalism
of quantum mechanics. The central problem in quantum chemistry is finding approximate
solutions to the non-relativistic, time-independent Schrödinger equation

H|ψ⟩ = E|ψ⟩, (2.1)

where H is the Hamiltonian of the nuclei and electrons forming the molecule. The above
equation represents an eigenvalue equation, and solving it gives full information about the
molecular eigenstates and eigenvalues. Besides solving this eigenvalue problem, in many settings
it is also interesting to look at the non-relativistic, time-dependent Schrödinger equation
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iℏ∂t|Ψ⟩ = H|Ψ⟩ (2.2)

which dictates the time-dynamics of the molecule. It is important to note that once Eq. (2.1)
is solved and the Hamiltonian is diagonalized, Eq. (2.2) becomes trivial to solve. In fact, for
time-independent Hamiltonians, solving Eq. (2.2) boils down to calculating the unitary time
operator U(t) = e−iℏtH.

An important question now arises - what does this molecular Hamiltonian H looks like for a
general molecule? Let us consider a molecule with Nn nuclei and Ne electrons. Each nucleus
α = 1, . . . , Nn has a mass Mα and an atomic number Zα, and has coordinates Rα, where we use
bold letters to represent three-dimensional vectors. In an analog way, each of the Ne electrons
j = 1, . . . , Ne has coordinates rα. Then, the full molecular Hamiltonian can be written as

Ĥ =−
Ne∑
j=1

1

2
∇̂2

j −
Nn∑
α=1

1

2Mα

∇̂2
A −

Ne∑
j=1

Nn∑
α=1

e2

4πϵ0

Zα

|ri − Rα|

+
1

2

Ne∑
i ̸=j=1

e2

4πϵ0

1

|ri − rj|
+

1

2

Ne∑
α ̸=β=1

ZαZβ

|Rα − Rβ|
,

(2.3)

where ∇j(α) is the Laplacian operator, involving differentiation with respect to the correspond-
ing electronic (nuclear) coordinates, e is the electric charge of the electron and ϵ0 is the vacuum
permittivity.

A very common approximation in quantum chemistry is the so-called Born-Oppenheimer Ap-
proximation [2, 3], based on the fact that nuclei are over 1000 times heavier than electrons.
Thus, nuclei can be treated as classical stationary point charges, so that the problem is ex-
pressed such that it only involves electrons moving in a stationary nuclear potential. This
allows to express the wavefunctions of the nuclei and the electrons separately, greatly reducing
the complexity of the problem. For the sake of clarity, from now on we work in atomic units
such that the Planck constant ℏ, the electron mass me, the electron charge e and the Bohr
radius a0 are all set to 1, ℏ = me = a0 = e = 1. In these units, the electronic Hamiltonian of a
molecule under the Born-Oppenheimer approximation can then be written as

He = −
Ne∑
j=1

1

2
∇̂2

j −
Ne∑
j=1

Nn∑
α=1

ZαVc (rj,Rα) +
1

2

Ne∑
i ̸=j=1

V̂c (ri, rj) . (2.4)

V̂c stands for a Coulomb interaction of the form V̂c(r̂1, r̂2) =
a

|r̂i−r̂j | . The first term accounts for
the kinetic energy of the electrons, and the second term represents the electron-nuclei attraction.
The third term is the electron-electron repulsion.
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Solving equations (2.1) and (2.2) for the electronic Hamiltonian He constitutes the electronic
structure problem. Most of the work in computational quantum chemistry has focused on
solving this problem. In many settings, we are only interested in solving the equations for the
low lying energy eigenstates, as knowledge of the energy eigenstates allows for the prediction of
reaction rates. Other typical problems in quantum chemistry involve, for example, calculating
the vibrational movement of the nuclei in the molecule, among others.

2.2 Second quantization

Electrons are fermions, which means that they satisfy the Pauli exclusion principle, i.e., two
identical fermions cannot occupy the same quantum state. This implies that the quantum
mechanical wavefunction describing fermions must be antisymmetric with respect to exchange.
The antisymmetric nature of the fermionic wavefunction can be enforced in two different ways,
known as first and second quantization. The difference between the two lies in where this
antisymmetry is enforced. First quantization imposes the antisymmetry in the wavefunction
itself, while in second quantization it is the operators acting on the wavefunction which take
in account the fermionic statistics of the electrons. In general, second quantization approaches
are more common and have received more attention, specially within the quantum computing
community, and therefore we will focus on these in this work. Nevertheless, it is worth men-
tioning that some important work towards first-quantized quantum algorithms has been done
in the past few years [49, 50].

In order to take the electronic Hamiltonian into a second quantized formalism, we must first
choose a set of N basis states, usually called orbitals, B = {|ϕp⟩}Np=1 where to project the
electronic Hamiltonian in Eq. (2.4). These basis functions approximate the electron spin-
orbitals, and they define the family states |n1, n2, . . . , nN⟩, where the occupation number np is 1
if the p-th spin-orbital is occupied and 0 if it is unoccupied. The space of all such states is known
as Fock state. Building from this representation, one can define the creation(annihilation)
fermionic operators â†p(âp). These operators act on the p-th orbital as

âp|0⟩p = 0, âp|1⟩p = |0⟩
â†p|0⟩p = |1⟩, â†p|q⟩p = 0

(2.5)

Furthermore, these operators satisfy the fermionic Canonical Anticommutation Relations (CARs)

{âp, â†q} = δp,q1̂, {âp, âq} = 0 ∀p, q , (2.6)

If this basis B is complete, i.e. infinite-dimensional, then the mapping between the electronic
Hamiltonian (2.4) and the second quantized picture is exact. However, for computational
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purposes this basis is truncated to a finite-size, inducing a certain discretization error as a
consequence of the finite-size basis. Once the set of basis functions is chosen, one can express
the electronic Hamiltonian in a second quantized basis as

Ĥe =
∑
pq

hpqâ
†
pâr +

∑
pqrs

hpqrs â
†
pâ

†
qârâs. (2.7)

The first term of the above Hamiltonian captures the energy associated with the single-electron
interactions, namely the electronic kinetic energy and the nuclei-electron interaction, whereas
the second term encodes the electron-electron repulsion. These coefficients are calculated with
the real space representation of the basis functions ϕp(r) = ⟨r|ϕp⟩

hpq =

∫
drϕ∗

p(r)

[
−∇2

2
−
∑
α

ZαVc (r,Rα)

]
ϕq(r)

hpqrs =

∫∫
drdr′ϕ∗

p(r)ϕ
∗
q (r

′)
1

|r− r′|
ϕr (r

′)ϕs(r)

(2.8)

A typical choice for this basis functions are linear combinations of single electron spin-orbitals
or atomic orbitals, centered around the nuclei positions. Using atomic orbitals gives a Hamil-
tonian with a number of terms scaling as O(N4). The most common atomic orbitals is the
Slater-Type Orbitals with n Gaussians (STO-nG basis) [2, 3], which uses n Gaussian functions
to approximate the Slater determinants. Other choices of basis functions include grid basis dis-
cretization [51] or plane waves bases [52], the latter being particularly convenient for periodic
systems as they enforce a periodic charge distribution. Using plane waves has the additional
advantage of providing a quadratic reduction in the number of Hamiltonian terms. The choice
of the orbital basis is critical for the efficiency and accuracy of the solutions. Incorporating
insights from classical computational chemistry into the construction of suitable orbitals basis
is key towards simulating molecules with quantum computers.

2.3 Classical algorithms

Solving the electronic structure problem is the central topic in quantum chemistry. Not only it
is important by itself, but solving it is also a usual first step in algorithms developed to calculate
properties of molecules and chemical reactions. The most used classical algorithm in quantum
chemistry to approximate the electronic structure problem is, by far, the Hartree-Fock method
[53, 54].

The Hartree-Fock (HF) method, also referred as the Self-Consistent Field (SCF) method, is a
central algorithm in quantum chemistry, not only as a method itself but also as a starting point
for more accurate algorithms. The HF method aims to output the best single Slater determinant
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approximation to the electronic wavefunction, known as the Hartree-Fock state. To do so, the
HF methods assumes that each electron can be described by an independent wavefunction which
does not explicitly depend on the other electrons of the molecule. Each electron is described
by an hydrogen-like wavefunction, and the interactions between the electrons are reduced to a
mean field approximation. This is, of course, a very serious approximation, and it is the reason
why HF fails to solve certain systems, particularly in strongly correlated systems where the
mean-field approximation does not accurately capture the interactions.

As mentioned above, the total electronic wavefunction is described by a Slater determinant,
which is an antisymmetrized product of atomic orbitals. Let us illustrate the concept of Slater
determinant with the two-electron case. Consider a molecule with two electrons x1 and x2.
The simplest ansatz one can imagine for the total electronic wavefunction |Ψ⟩ is the product
of the individual, separable wavefunctions of the electrons χ(x1) and χ(x2):

|ψ⟩(x1,x2) = χ1(x1)χ2(x2), (2.9)

which is known as a Hartree product. While this ansatz is very easy to write, it has one major
shortcoming- the wavefunction is not antisymmetric! As explained in the previous section,
the electronic wavefunction must be antisymmetric with respect to exchange of two electronic
coordinates to satisfy the Pauli exclusion principle. The ansatz in Eq. (2.10), will in general
not be antisymmetric, this is, in general χ1(x1)χ2(x2) ̸= χ2(x2)χ1(x1). A solution to enforce
the antisymmetry in the Hartree product is known as the Slater determinant :

|ψ⟩(x1,x2) =
1√
2
[χ1(x1)χ2(x2)− χ1(x2)χ2(x1)] =

1√
2

∣∣∣∣∣χ1(x1) χ2(x1)

χ1(x2) χ2(x2)

∣∣∣∣∣ . (2.10)

It is easy to see that Slater determinants are antisymmetric by construction. This concept is
easily generalized to the N-electron case as

|ψ⟩ = 1√
N !

∣∣∣∣∣∣∣∣∣∣
χ1 (x1) χ2 (x1) · · · χN (x1)

χ1 (x2) χ2 (x2) · · · χN (x2)
...

... . . . ...
χ1 (xN) χ2 (xN) · · · χN (xN)

∣∣∣∣∣∣∣∣∣∣
Therefore, the Hartree-Fock method outputs the best single Slater determinant approximation
to the electronic wavefunction, known as the Hartree-Fock state. Expressing the wavefunction as
this antisymmetrized product implies that the electrons interact with each other in a mean field
approximation- each electron moves independently from all the others except from the average
Coulomb repulsion. Electrons also feel an exchange interaction due to the symmetrization.
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Although HF is able to provide a remarkably good first-approximation in many cases, it also
presents severe limitations. Some relevant cases of systems where HF does not give qualitatively
correct results is, for example, the ordering of the ionization potentials of N2. However, the HF
state is frequently used in both classical and quantum algorithms as an initial state to more
refined post-HF methods. HF energy gives an upper bound to the exact energy.

The conceptually simplest classical post-HF method is the method of Configuration Interaction
(CI) [2, 55, 56]. It provides an exact solution up to the inherent error due to the finite size
of the orbital basis. CI uses a linear combination of all Slater determinants, optimized via a
variational approach. Although it gives an exact solution, the number of required determinants
grows factorially with the number of electrons and orbitals, meaning it is computationally very
expensive even for moderate size systems.

The required accuracy when estimating energies to make realistic predictions is known as chem-
ical accuracy, and it is normally considered to be 4kJ/mol (1.6 · 10−3 Hartree). If the energy
is known to chemical accuracy, then one can predict the chemical rate of a reaction at room
temperature within one order of magnitude by using Eyring equation [57]. Although classical
computational chemistry can reach this accuracy in a great variety of molecular systems, there
exist some relevant systems where classical computation is far from reaching this accuracy. We
review in more detail how to classify the computational complexity of the electronic structure
problem in Appendix (A).
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3
Quantum simulation of quantum

chemistry

Although many classical algorithms for quantum chemistry have been developed providing
highly accurate results in many systems of interest, classical computation presents serious short-
comings when modelling some chemical systems of interest. A major challenge when simulating
large molecules in classical computers is the memory required to store their wavefunction, which
scales exponentially with the size. This makes unfeasible to classically simulate some relevant
chemical systems and reactions, specially in the case of strongly correlated systems such as
the enzyme nitrogenase responsible for nitrogen fixation, as explained in Chapter 1. Quantum
computers, on the other hand, provide an exponential save in memory as they are also quantum
systems with an exponentially scaling Hilbert space dimension.

In this Chapter, we review the three main models of quantum computation and their applica-
tions to quantum chemistry. We begin in Section 3.1 with the best known gate-based model of
quantum computation, which we refer to as Digital Quantum Computation (DQC), and discuss
digital quantum algorithms for the ground state problem (Section 3.1.2) and for time simulation
(Section 3.1.3). Then, Section 3.2 discusses the concept of an analog quantum simulator and
the Analog Quantum Computation (AQC) model, and reviews a recent proposal for the quan-
tum chemistry simulation using ultracold atoms in optical lattices. Finally, ChapSectionter 3.3
describes the Adiabatic Quantum Computation (AdQC) model and what tools are used to map
quantum many-body systems into quantum annealers with restricted connectivity.
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3.1 Digital quantum computation

The first model of quantum computation we discuss is Digital Quantum Compution (DQC),
also referred to as gate-based quantum computation. The basic unit of a DQC are quantum
bits or qubits. Qubits are two-level quantum systems, normally denoted |0⟩ and |1⟩. Qubits can
be implemented in a wide variety of physical platforms, such as for example superconducting
qubits [11, 17], trapped ions [38, 58, 59], nitrogen-vacancy (NV) centers in diamonds [60],
photons [61, 62] and many more. In digital quantum computing the qubits are manipulated
through pre-defined quantum operations or quantum gates, which represent unitary operations
acting on one or various qubits. The basic structure of a digital quantum algorithm is the
following. First the qubits are initialized in an initial state that is easy to prepare, usually the
state where all the qubits are in the |0⟩ state. Then, a series of quantum gates are applied to the
initial state, implementing a certain unitary evolution of the state of the qubits in the quantum
register. Information is then retrieved from the quantum computer by measuring the state of
the qubits. We say that DQC is an universal model of quantum computation as, in principle,
any unitary operator can be implemented as long as the quantum computer has access to a
suitable set of quantum gates. A set of quantum gates is said to be universal if any unitary
operator can be decomposed in gates belonging to the set.

Current digital quantum computers still have a small number of low-quality qubits available,
with low connectivity. A fundamental challenge towards realizing a large digital quantum
computer is noise. Although qubits are built to be isolated from the environment, they are in
practice very fragile and interact with the noisy environment. This causes qubits to decohere
after short periods of time, which ultimately limits the length of the quantum algorithms that
can be implemented in the quantum computer. Qubits also suffer from experimental and
control errors, as their physical implementation is usually quite involved. As a way to avoid
the high-rate of errors, Quantum Error Correction (QEC) methods have been proposed to
encode physical qubits in more robust logical qubits by using ancillary qubits. However, the
qubit requirements to have QEC in a quantum computer is still far beyond current technology.
Near-term computers with no access to QEC have been coined with the term NISQ (Noisy
Intermediate-Scale Quantum) computers.

Many digital quantum algorithms for quantum chemistry have been proposed in the past years
[1, 63] and even implemented in real quantum hardware. In this Chapter, we distinguish two
main types of digital quantum algorithms depending on whether they aim to solve the ground
state problem of the molecule (i.e. solve the time-independent Schrödinger equation (2.1))
or to simulate the time-dynamics of the molecule (i.e. solve the time-dependent Schrödinger
equation (2.2)). Both problems are central to quantum chemistry and a variety of algorithms
have been developed to tackle them.
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3.1.1 Mapping fermions into qubits

In order to encode a the second quantized electronic Hamiltonian (2.7) of a molecule in a
register of qubits, we must devise a way to map fermionic operators acting on indistinguishable
electrons to spin operators acting on distinguishable qubits. This mapping should, in the first
place, be isospectral so that the energy spectrum of the molecule is preserved. Futhermore,
it must take in account the antisymmetric nature of the electronic wavefunction: electrons
in different orbitals anticommute (see CARs in 2.6), while qubits on different sites commute.
Therefore, a valid fermion-to-qubit mapping should also preserve this fermionic CARs. There
exist a number of methods to do this, the most of common of which we describe below.

The most basic fermion-to-qubit mapping is the Jordan-Wigner (JW) mapping. JW works by
storing the occupation number of the p-th orbital in the |0⟩ and |1⟩ state of the p-th qubit. This
means that N qubits are needed to encode N orbitals. In the JW mapping, the annihilation
and creation fermionic operators are mapped into qubit operators as

âp =

(
p−1⊗
q=0

Zq

)
σ−
p and â†p =

(
p−1⊗
q=0

Zq

)
σ+
p , (3.1)

where Z is the σz Pauli operator. σ−
p = |0⟩⟨1|p = 1

2
(Xp + iYp) and σ+

p = |1⟩⟨0|p = 1
2
(Xp − iYp)

are spin ladder operators satisfying σ−
p |1⟩p = |0⟩p, σ+

p |0⟩p = |1⟩p and σ−
p |0⟩p = σ+

p |1⟩p = 0. The
role of the string of Z operators is to preserve the fermionic anticonmmutation relations, while
the ladder operators change the occupation number of the qubits. Using the JW encoding, the
second quantized electronic Hamiltonian (2.7) is mapped into a k-local spin Hamiltonian

He =
M∑
j=1

cjPj (3.2)

where Pj are Pauli strings acting non-trivially in at most k qubits, and cj the corresponding
coefficients. The number of terms M will depend on the orbital basis set used to map the
electronic Hamiltonian into the second quantized basis, and it will normally scale as O(N4),
being N the number of orbitals in the basis. On the other hand, the locality of the Hamiltonian
k scales as O(N) for the JW encoding as a consequence of the Z Pauli strings in (3.3). JW
therefore encodes the occupation number locally but the parity information is highly non-local.
A dual mapping to JW is the parity mapping [64], which encodes the parity information locally
and the occupation number non locally. The fermionic annihilation and creation operators in
the parity mapping are mapped into qubit operators as

âp = Zp−1σ
−
p

(
N⊗

q=p+1

Xq

)
and â†p = Zp−1σ

+
p

(
N⊗

q=p+1

Xq

)
. (3.3)

18



The parity mapping has the same resource requirements, using N qubits and with a locality k
scaling linearly.

However, the linear scaling of the locality can be improved by using more refined fermion-
to-qubit mappings. A important example is the Bravy-Kitaev (BK) mapping [65, 66], which
provides qubits operators acting non-trivially on O(log(N)) qubits while still using N qubits
to encode N orbitals. The BK mapping finds a middle ground between the JW and the parity
mapping, in the sense that it encodes both the occupation number and the parity in a non-
local manner. In particular, it encodes the occupation number in the even qubits, while the
odd qubits store the parity of a given set of qubits. The mapping of the operators is more
complex in the BK and can be found in [66].

3.1.2 Digital quantum algorithms for the ground state problem

We now discuss digital quantum algorithms to solve the electronic eigenvalue problem, this
is, finding the electronic eigenstates and eigenenergies, which boils down to solving the time-
independent Schrödinger equation (2.2). In many cases, we are particularly interested in finding
the lowest eigenenergy, referred to as the ground state energy, and its associated eigenstate,
known as the ground state. The canonical quantum algorithm to solve the eigenvalue problem is
known as the Quantum Phase Estimation Algorithm (QPEA) [18, 67, 68], used to estimate the
eigenvalues of an unitary operator with high probability. Unfortunately, the implementation of
QPEA requires quantum circuits with depths, which is out of reach of current NISQ devices
due to the short decoherence times of the qubits and the low fidelity of the gates.

Numerous alternative approaches have been developed to solve the ground state problem in
NISQ devices. A particularly promising approach that has recently received a lot of attention
in the literature are a set of quantum algorithms referred to as Variational Quantum Algorithms
(VQAs). VQAs are based on a hybrid classical-quantum approach that relies on both classical
and quantum computation to run the algorithms. The quantum circuit of a VQA consists
of a series of parametrized quantum gates, whose variational parameters are optimized via a
classical optimizer in order to minimize a scalar objective function. This objective function is
commonly known as the cost function of the algorithm, and varies depending on the particular
application. This way, the quantum processor is used to store the quantum wavefunction, while
the classical processor is used in the optimization process.

VQAs are known to present more resilience to noise in the quantum hardware [69], which makes
them an ideal candidate to achieve quantum advantage in near-term devices. Nevertheless,
VQAs also presents major challenges related to trainability, as the classical optimization of the
gate parameters can be a very hard problem to solve [70, 71]. One of the main difficulties of
training VQAs is the emergence of regions in the training landscape where the gradient of the
cost function vanishes, commonly called barren plateaus. In order to avoid barren plateaus it is
critical to choose an ansatz adapted to the specific target problem one is trying to solve, as it
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has been shown that in parametrized random circuits the probability of having barren plateaus
increases exponentially with the number of qubits [72]. One of the key aspects of VQAs is that
they are very versatile, and have been applied to a wide variety of problems.

An important subclass of VQAs is the Variational Quantum Eigensolver (VQE). Given a Hamil-
tonian H and a trial wavefunction |ψ(θ⃗)⟩, the objective of the VQE is to provide an approxi-
mation to the ground state of the Hamiltonian, denoted by |ψgs⟩, with associated ground state
energy E0. This is achieved by optimizing the parameters of the trial wavefunction, defined by
the chosen parametrized quantum circuit, such that its energy E(θ⃗) is minimized. According
to the variational principle, the energy of any trial function is bounded by

E0 ≤ E(θ⃗) =
⟨ψ(θ⃗)|H|ψ(θ⃗)⟩
⟨ψ(θ⃗)|ψ(θ⃗)⟩

, (3.4)

so by definition, the energy of the trial wavefunction is an upper bound of the ground state
energy of H. The associated minimization problem is defined by

EVQE = min
θ⃗
⟨ψ(θ⃗)|H|ψ(θ⃗)⟩. (3.5)

Although the VQE is usually used to prepare the ground state, the algorithm can be extended
to prepare excited states as well [73]. The VQE algorithm has been successfully implemented
to prepare the ground state of small-size molecules in a variety of platforms [17, 58, 62]. The
choice of the ansatz for the trial wavefunction, which corresponds to the parametrized quantum
circuit, plays a vital role in the algorithm as it ultimately limits the expressibility of the trial
wavefunction. The quality of the ansatz thus heavily conditions the accuracy of the results and
the efficiency of the algorithm. If the ansatz is not general enough, it could mean that no good
approximation of the ground state can be achieved by optimizing the ansatz. On the other
hand, if the ansatz is not tailored to the specific problem at hand, the optimization problem
associated with the VQE (Eq. 3.5) can become extremely difficult to solve, as the VQE would
have to search through the whole Hilbert space of states defined by the ansatz.

There are two main approaches that can be taken to design the ansatz of a VQE. Motivated
by the limited connectivity and low fidelity of the gates in NISQ devices, one can decide to
use quantum circuits which take advantage of the underlying hardware where the algorithm
is being run. These type of ansatze are known as hardware efficient (HWE) ansatze [17, 74],
and most of the experimental demonstrations of the VQE so far have followed this approach,
as current quantum computers are very limited in terms of quality of the qubits and gates.
Given these limitations, it is convenient to use the most efficient operations available in your
device for the ansatz. HWE ansatze are usually built from alternated layers of single qubit
rotations and entangling blocks. However, as we mentioned previously, using random circuits
not tailored to the target problem can lead to barren plateaus, which makes hardware efficient
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ansatze not an escalable approach for larger circuits.

The second type of ansatz are the ones designed specifically for the target problem, usually
inspired in physics-based argurments, which we refer as physics-motivated anstaze [75–77]. The
main challenge towards practical implementations of these kind of ansatze is the deep quantum
circuits they require, making their implementation unfeasible in current devices for even small
molecules. Through this work, we will focus on this type of ansatz, and in particular on the
Unitary Coupled-Cluster ansatz (UCC) [76–78], which is of particular importance in quantum
chemistry applications. UCC is sometimes referred as the gold standard of quantum chemistry.

The UCC method is a variant of the Configurations Interaction method, where only Slater
determinants with a fixed number of excitations with respect to a reference state (usually a
Hartree-Fock state). The UCC ansatz is based on the Coupled Cluster operator provides the
following state:

|ψUCC⟩ = eT (θ⃗)−T †(θ⃗)|ϕo⟩, (3.6)

with T being the anti-hermitian cluster operator:

T (θ⃗) =
∑
k

T (k)(θ⃗) (3.7)

The operator T (θ⃗) is also known as the excitation operator. The term T (1) generates single
excitations from the reference states, T (2) generates double excitations, and so on. The series
in Eq. (3.7) is usually truncated at second order, the Unitary Coupled Cluster with Single and
Double excitations (UCCSD), T (θ⃗) = T (1)(θ⃗) + T (2)(θ⃗)

T (1)(θ⃗) =
∑
p∈vir
r∈occ

θrpâ
†
pâr

T (2)(θ⃗) =
∑

p>q∈vir
r>s∈occ

θrspq â
†
pâ

†
qârâs

(3.8)

where occ and vir refer to occupied and virtual orbitals in the Hartree-Fock state, respectively.
The UCCSD ansatz is a very common choice for the quantum circuit of the VQE algorithm, as
the classical coupled cluster theory is very well studied and is among the most accurate methods
for quantum chemistry simulation. Implementing the UCCSD ansatz in a quantum circuit boils
down to implementing the UCC unitary operator eT (θ⃗)−T †(θ⃗) defined in Eq. (3.6). For practical
applications, this unitary is normally approximated using Trotter-Suzuki formulas, which will
be explained in the next section.
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3.1.3 Digital quantum algorithms for time dynamics

The challenge of simulating the time evolution of the electronic Hamiltonian is of great impor-
tance in quantum chemistry. It is not only important to predict the behaviour of molecules
in time, but implementing the unitary operator U(t) = eiHt of some electronic Hamiltonian H
is also a key subroutine of many algorithms to solve the ground state problem. This includes
fault-tolerant algorithms like the Quantum Phase Estimation algorithm, but also some NISQ
algorithms like the VQE algorithm with the UCC ansatz explained in the previous section.

To exactly solve the time-dependent Eq. (2.2) and implement the time-operator U(t) one
needs to know the full spectrum of the Hamiltonian, which becomes intractable even for small
systems. Therefore, approximated methods have been developed to approximate Hamiltonian
evolution. A standard approach to target this problem relies on the use of product formulas or
Trotterization [9, 79–82]. Given a Hamiltonian with r terms

H =
r∑

j=1

cjPj , (3.9)

where Pj are Pauli strings, we want to implement an approximation of its time evolution
operator U(t) = eiHt. The first order Trotter approximation of the exponential is given by

e−iHt ≈

(
r∏

j=1

e−icjPjt/nT

)nT

+O

(∑
j,k

[Pi, Pj]
t2

2nT

)
. (3.10)

Intuitively, the above equation approximates the time operator U(t) by partitioning the evo-
lution in nT steps, referred to as Trotter steps. In the limit where nT is infinite, the above
equation becomes exact. The error induced by the first order approximation scales with the
magnitude of the commutators between all possible terms. The accuracy of the Trotterized
evolution can be increased by using higher-order formulas [80, 83] and by carefully choosing
the ordering strategy in which the terms e−icjPjt/nT are implemented [56].

3.2 Analog quantum computation

In the previous Section we have discussed the digital quantum computation paradigm, where
the basic unit of information are qubits, and the algorithms are comprised of a series of quantum
gates that are applied to the qubits. When it comes to the simulation of quantum mechanical
systems, another quantum computation model has emerged as an important approach to study
the properties and dynamics of more diverse quantum systems: Analog Quantum Simulation
(AQS) [19, 84, 85]. The idea behind AQS is to use a controllable quantum system, the analog
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simulator, to simulate another less controllable target quantum system. This is done by engi-
neering the interactions of the target Hamiltonian in the simulator, so that the time-dynamics
of the simulator corresponds with the dynamics of the simulated system. This allows to study
properties of the simulated system by measuring obsevables in the simulator.

Currently available analog quantum simulators present a series of advantages with respect
to their digital quantum couterparts. While digital quantum computers are still currently
restricted to very small sizes up to around 100 qubits, analog simulators with up to 256
qubits have been already demonstrated [21]. Analog simulators have been used to study classi-
cally intractable spin-models [22], demonstrating quantum advantage in the analog simulation
paradigm. Much like digital computers, there exists a wide variety of experimental platforms
where one can implement quantum analog simulators. The most advanced architecture for
analog quantum simulation is ultra-cold atoms in optical lattices [26, 86, 87], although other
important possibilities include trapped ions [88], photonic simulators [13], quantum dots [12]
or superconducting circuits [89], among others.

However, unlike digital quantum computers, analog simulator are specific-purpose machines
which are built to solve some specific target problem. Analog quantum computers are not
universal, in the sense that they cannot implement any unitary evolution of the system, and
thus their application is limited to the system of study. Despite this limitation, the error rates
of analog simulators are much smaller than in digital quantum computers [90], making analog
simulators a strong candidate for the study of classically intractable systems [22, 91].

3.2.1 Analog simulation of quantum chemistry

Analog quantum simulators have been applied to the field of quantum chemistry, for example
in the study of chemical dynamics [25], transport phenomena [92] or molecular vibrations [93].
However, a complete simulation of the electronic structure problem in an analog simulator
was not proposed until very recently by Argüello et al. [26]. The reason behind the difficulty
of building an analog simulator for quantum chemistry is the complexity of the electronic
structure Hamiltonian 2.4, and in particular of the term associated with the Coulomb long-
range interactions between the electrons. In a molecule, each electron interacts with every
other electron according to a Coulomb potential with a 1/r dependency. Engineering long-
range interactions in an analog simulator is a hard task, and this has been the main hurdle
towards a complete simulation of the electronic structure of molecules. Indeed, most of the
experimental demonstrations of analog simulations have involved local Hamiltonians, as these
can be implemented in a more straightforward way.

In their seminal work [26], Arguello et al. proposed a method for engineering this long range in-
teractions by using ulta-cold atoms in optical lattices combined with QED cavities [26]. As men-
tioned above, the most complex term to engineer is the electron-electron long range Coulomb
repulsion, as in the optical lattice, fermionic atoms only interact locally with neighbouring
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atoms. The long-range interactions between the fermionic atoms are realized by incorporating
an auxiliary atomic species to the lattice, which is initialized in a Mott insulating state. This
auxiliary atomic species must have three-internal long-lived states subject to different optical
potentials, therefore requiring to have access to state-dependent optical potentials. Transitions
between the states are mediated via a QED cavity and an external field. With these ingre-
dients, and under a set of assumptions, it can be shown that the interaction of the fermionic
atoms with the auxiliary atomic species gives rise to a 1/r Coulombian repulsion between the
fermionic atoms mimicking the electron-electron repulsion in the molecule. Finally, the nuclear
potential of the molecule is simulated via an auxiliary optical potentials, which must be shaped
via 3D holographic techniques to have a Coulombian form.

Some of the above requirements for the experimental setup are out of reach with the current
technology. A major challenge is that, as a consequence of using a grid discretized basis to
map the electronic Hamiltonian into a second-quantized picture, a very large lattice sizes are
required for the mapping to be accurate. As an example, to accurately describe the dissociation
profile of the H2 molecule, the smallest possible molecule, lattices with the order of 100x100
atoms are required [26]. Other experimental requirements that fall beyond current technology
is the 3D holographic techniques needed to shape the auxiliary optical potentials simulating the
nuclear potential or having access atomic state-dependent optical potential to trap the different
states of the auxiliary atoms. Given the great experimental challenges building the simulator in
[51], the authors proposed in an experimental pathway towards a full implementation, starting
with a 2-dimensional lattice that would allow to simulate 2-dimensional molecules [51].

Besides the proposal in [26] using ultracold atoms, recently long-range electron-electron interac-
tions were implemented in an array of gate-defined semiconductor quantum dots [94], paving the
way for further quantum chemistry analog simulations in other quantum hardware platforms
in the future.

3.3 Adiabatic quantum computation

The last quantum computing model we will review is Adiabatic Quantum Computing (AdQC)
[28, 29]. AdQC is based on the fact that the solution of many computational problems can
be encoded in the ground state of a quantum Hamiltonian. AdQC works by preparing the
quantum device in the ground state of an initial Hamiltonian H0 whose ground state is easy
to prepare. This initial Hamiltonian is evolved into another, more complicated Hamiltonian,
H, whose ground state encodes the solution of the computational problem. According to the
quantum adiabatic theorem, if the Hamiltonian is varied sufficiently slowly, then the state of the
system remains in the ground state throughout the evolution. Adiabatic quantum computation
is computationally equivalent to digital quantum computation in the sense that any digital
algorithm can be translated to the adiabatic model with polynomial overhead [95], and thus
it is also an universal model of quantum computation . A common choice for the initial
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Hamiltonian is H0 = −
∑

i,j σ
x
i σ

x
j . This Hamiltonian is gradually reweighted according to a

scheduling function λ(t) ∈ [0, 1], so that H(t) = (1 − λ(t))H0 + λ(t)H The run time of the
algorithm depends on the spectral gap ∆ between the ground state and the first excited state.

Quantum devices implementing the AdQC model are known as quantum annealers, and have
already been used to solve various problem in optimization [30], algebra [31] and quantum
simulation [32], among many others. The current state-of-the-art quantum annealing machines
have around one order magnitude more qubits than state-of-the-art digital quantum computers,
reaching 2000 qubits [96]. Quantum annealers have been predicted to potentially be the first
quantum computing model with industrial value due to their efficiency to solve optimization
problems [97], as a consequence of their current number of qubits and low levels of noise.

The first complete proposal to solve the electronic structure via AdQC was done by Babbush
et al. [33], although other proposals to simulate quantum many-body systems in quantum
annealers exist [98–102]. A major challenge when simulating quantum many-body systems in
quantum annealers is the limited connectivity of the devices, which usually requires to map the
target problem into an Ising model with a transverse field

H =
N∑
i<j

gi,jZ
(i)Z(j) +

∑
i

hiXi. (3.11)

The electronic Hamiltonian will in general be a k-local Hamiltonian after being mapped into
qubit operators (Eq. 3.2), with k scaling with the number of orbitals. The particular scaling of
k will depend on the fermion-to-qubit mapping used, being O(N) for the Jordan-Wigner or the
parity mappings, and log(O)(N) with the Bravyi-Kitaev mapping. Therefore, the electronic
Hamiltonian cannot be mapped straightforwardly into a However, mathematical tools have
been develop to map general k-local Hamiltonians into the form of Eq. (3.11). In the next
Section we look at one of these mathematical tools, namely Hamiltonian gadgets.

Apart from the electronic structure problem, quantum annealers have been used to solve other
problems in quantum chemistry. For instance, [103] used D-Wave quantum annealers to calcu-
late the vibrational spectrum of two molecules, O2 and O3.

3.3.1 Hamiltonian gadgets

Perturbative Hamiltonian gadgets [33, 48, 104] are a mathematical technique used to embed
spectra of some target non-local Hamiltonians, which in our case will be the electronic Hamil-
tonian 3.2, into a more restricted (normally 2-local) Hamiltonian which we refer to as gadget
Hamiltonian H. Hamiltonian gadgets are used simulate non-local systems, for instance quan-
tum many-body systems, in quantum annealers with restricted (typically 2-local) interactions.
Hamiltonian gadgets work by enlarging the Hilbert space of the gadget Hamiltonian, adding
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a number of ancillary qubits such that the low energy spectrum of Hgad approximates the
spectrum of Htar.

To introduce the idea of Hamiltonian gadget we will review here the bit flip gadget, introduced
by Kempe el al. [47] in the context of proving the QMA-completeness of 2-local Hamiltonians,
and later generalized in [48]. The bit flip gadget was used, with some modifications, in [33] to
map the electronic Hamiltonian into a quantum annealer. It belongs to the family of perturbative
gadgets Let us consider as the target Hamiltonian a general k-local spin Hamiltonian, which in
our case will be the electronic Hamiltonian, defined as

Htar =
r∑

j=1

cjPj , (3.12)

where Pj are Pauli strings acting non-trivially in at most k qubits,

Pj =
k⊗
j

σs,j, (3.13)

with σs,j = n̂s,j ·σ⃗s,j, where n̂s,jis a unit vector in R3 and σ⃗s,j is the vector of Pauli matrices acting
on the j-th qubit. The goal is to simulate this Hamiltonian by using only 2-local interactions.
To this end, the bit flip gadget introduces k ancilla qubits for each of the terms Pj in the
Hamiltonian above, so there are rk ancilla qubits in total. Then, the gadget Hamiltonian is
chosen to be

Hgad =
r∑

j=1

Hanc
s + λ

r∑
j=1

Vs, (3.14)

where the first term is the Hamiltonian of the ancilla system and the second term is a the
perturbation Hamiltonian with a (small) coefficient λ, and where

Hanc
s =

∑
1≤i<j≤k

1

2
(I − Zs,iZs,j)

Vs = σs,1 ⊗Xs,1 +
k∑

j=2

cs,jσs,j ⊗Xs,j.

(3.15)

For each term s in the target Hamiltonian Htar there is a corresponding register of k ancillas,
and the Zs,iZs,j and Xs,j terms in the equations above act on the ancilla qubits corresponding
to the s term. The ancilla system has a ground state space spanned by the |00 . . . 0⟩anc and
|11 . . . 1⟩anc states . On the other hand, the operator X⊗k

s = Xs,1 ⊗Xs,2 ⊗ . . .⊗Xs,k commutes
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with Hgad, which means that Hgad can be block diagonalized into 2r blocks correspondinng to
each ancilla register ben in the +1 or -1 eigenspace of X⊗k

s . In [48], it was shown that the
low energy eigenstates of the block corresponding to all the ancilla registers being +1, Hgad

+ ,
approximate Htar. In particular, the interactions corresponding to the target Hamiltonian arise
in the k-th order perturbation .

Although perturbation theory is commonly used in the creation of these gadgets, it does set high
requirements in the control accuracy, as it induces a high variability in the coupling strengths,
with very differences of several orders of magnitude [104, 105]. Non-pertubative gadgets which
lower this control requirements have been developed for various cases [106, 107], for instance
in the special case of diagonal Hamiltonians, gagdets that exactly encode the spectrum exactly
have been proposed [108].
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4
Digital-analog quantum simulation of

quantum chemistry

In this Chapter, we review the Digital-Analog Quantum Computation (DAQC) model, which
combines Analog and Digital Quantum Computation, and its applications to quantum chem-
istry. We begin by giving an overview of the DAQC model in Section 4.1. Section 4.2 explains
what noise models we use in the simulations. Section 4.3 presents our benchmark of the DAQC
approach with two-qubit molecules, H2 and HeH+, for the VQE algorithm and the trotterized
time evolution. Finally, Section 4.4 describes strategies to scale the DAQC approach for larger
molecules.

The numerical simulations for this Chapter have been done using the Qiskit [109], Qutip [110]
and PySCF [111] packages. The full code can be consulted here.

4.1 Digital-analog quantum computation

So far in this thesis, we have discussed the three main models of quantum computation cur-
rently considered within the scientific community: digital (DQC), analog (AQC) and adiabatic
(AdQC) quantum computation, each of them with their advantages and disadvantages. How-
ever, these models do not exist without overlap, and recently algorithms combining different
models have been proposed. One example is digitized adiabatic quantum computing, which
combines the simplicity of the adiabatic algorithm with the flexibility of digital quantum com-
puters [10, 34]. A DAQC algorithm therefore consists of alternating layers of single-qubit gates
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and two-qubit gates.

Another important example of these "hybrid"1 algorithms belong to the so-called Digital-Analog
Quantum Computation (DAQC) model [35]. The DAQ model combines the universality of DQC
with the robustness of AQC against errors. A major challenge in DQC is the low fidelity of the
quantum gates, which severely limits the amount of quantum gates that can be implemented
in a quantum circuit. However, the fidelity of the gates is different depending on the type of
gate. Although single-qubit gates (SQGs) with fidelities above 99.9% have been achieved [112],
two-qubit gates (TQGs) remain the main source of errors in quantum circuits, with much lower
fidelities [45]. The DAQC avoids this issue by replacing two-qubit gates by blocks of analog
evolution of the underlying quantum device, which act as entangling blocks in the quantum
circuits.

Previous work has succesfully showcased the DAQC methodology to implement various quan-
tum algorithms such as the Quantum Fourier Transform [36] or the Quantum Approximate
Optimization Algorithm (QAOA) [37]), as well as to simulate certain spin models [35, 38] or
quantum field theories [39]. Simulation of fermionic systems such as the Hubbard model have
also been proposed [40–42]. The DAQC model has also been benchmarked in IBM quantum
computers using as a resource Hamiltonian the undesired cross-talk between the superconduct-
ing qubits [43].

The native Hamiltonian controlling the evolution of the analog blocks, which we refer to as the
resource Hamiltonian, is of course dependent on the chosen quantum hardware. Most of the
previous work in DAQC has considered as the resource Hamiltonian the homogeneous Ising
model, as it successfully models the native Hamiltonian in various platforms. For example,
the cross-resonance interaction arising in superconducting qubits can effectively be modelled
by an Ising model [44]. The DAQC approach with the homogeneous Ising Hamiltonian as a
resource Hamiltonian is an universal model of computation [35]. In fact, it has been proven
that universal quantum computation can be achieved by using local unitaries and any two-body
entangling operation [113].

In [35], a general scheme to simulate various spin models was proposed, using as a resource
Hamiltonian the homogeneous Ising model

Hr = g

N∑
j<k

Z(j)Z(k). (4.1)

Their approach used a series of alternating layer of analog evolution blocks and single qubit
rotations. The central part of the procedure consists of calculating the times the analog blocks
are let to evolved, which are calculated by solving a system of equations. In this work, it was

1In this context, "hybrid" refers to algorithms that combine different quantum computing models, not to
be confused with the common use in the literature to refer to algorithms using both quantum and classical
computation
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shown how to simulate various spin models as the inhomogeneous Ising model, XZ model or a
4-body nearest neighbour Hamiltonian. However, the number of analog blocks needed scales
exponentially with the number of terms in the Hamiltonian, meaning that for already moder-
ate size molecules the circuit would become too deep for NISQ devices. The main challenge
towards simulating quantum chemistry with the DAQC approach is the high non-locality of the
electronic Hamitonian, which arises due to the long-range interactions between the electrons in
a molecule, and the restricted connectivity of the natural interactions in quantum devices. This
problem can be circumvent using tools to reduce the locality of the electronic Hamiltonian, as
we discuss in Section 4.4.

4.2 The noise model

We now introduce the noise model we use in our simulations. Noise is one of the main challenges
towards the construction of large scale quantum computers. NISQ quantum processors available
today have a limited number of qubits very sensitive to various sources of errors. These qubits
cannot be completely isolated, and thus they interact with the noisy environment causing
errors in the computation. NISQ devices still do not have access to quantum error correction
protocols, which are still on the early experimental stages [114, 115], although quantum error
mitigation methods have been proposed to mitigate the noise [116]. An accurate mathematical
noise model of the noise in a quantum computer is key to correctly simulate realistic quantum
computations in NISQ devices.

To model noise we follow the same approach as in [117], where the DAQC model for the
Quantum Fourier transform was benchmarked under the presence of noise. Following the
same approach, in this work we will model noise in two different ways. Let us first start
describing the control-related experimental errors, which are modelled as random phase noise
in the unitary operators. The noise in single-qubit gates (SQGs), which is part of both the DQC
and the DAQC models, is modelled by a random variable ξ drawn from an uniform distribution
ξ ∈ U(1−SQGN, 1+SQGN), where U(a, b) stands for an uniform distribution with boundaries
(a, b). The noise in SQGs is then implemented as

eiθkσj → eiθkξσj , j = x, y, z (4.2)

where σj, j = x, y, z are the Pauli matrices.

In the DQC model, the entangling operation are two-qubit gates (TQGs). Following [35,
117], we model TQGs as blocks of fixed π

4
-phase ZZ-unitaries ei

π
4
ZZ sandwiched by SQGs.

For instance, a CNOT-gate with control qubit j and target qubit k is can be expressed as
CNOT= ei

π
4
Zje−iπ

4
ZjXkei

π
4
Xk [118]. We will use CNOTs as the TQGs in the digital circuits,

but any other TQG could be decomposed into fixed-phase entangling unitaries and SQGs in
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an similar way. The noise for TQGs is then modelled by a Gaussian noise in the phase of the
fixed π

4
-phase unitaries, represented by a random variable ϵ ∈ N (0,TQGN), where N (µ, σ)

stands for a Gaussian distribution with mean µ and standard deviation σ. The noise is then
implemented as

ei
π
4
ZZ → ei

π
4
(1+ϵ)ZZ (4.3)

Finally, in the DAQC model, noise is also introduced as a Gaussian noise in the time t are let
evolved, captured by the parameter δ ∈ N (0,ABN), so that noise is implemented as

eitαHr → ei(tα+δ)Hr . (4.4)

Besides control related noise, we model the noise due to the interaction with the environment via
the quantum channel formalism [67]. Noise processes are represented by a non-unitary channel
E taking the density matrix of the quantum state ρ into another quantum state ρ′ = E(ρ).
This mapping must be completely-positive-trace-preserving (CPTP) in order for ρ′ to be a valid
quantum state. Any valid quantum channel can be written, in the operator-sum representation,
as

E(ρ) =
∑
k

EkρE
†
k (4.5)

where Ek are the Kraus operators defining the channel, which must satisfy
∑

k EkE
†
k = 1. In

particular, we will use the bit-flip channel, which flips the state of a qubit from |0⟩ to |1⟩ with
probability pF . The Kraus operators corresponding to the bit-flip channel [67] are given by

E0 =
√
pF1 =

√
pF

(
1 0

0 1

)
, E1 =

√
1− pFX =

√
1− pF

(
0 1

1 0

)
. (4.6)

The value of the noise parameters are taken to be SQGN=10−4, TQGN=ABN=10−3 and pF =

5 · 10−3.

4.3 Two-qubit molecules

We now apply the DAQC approach to the quantum chemistry case. In particular, we focus
here on molecules whose electronic Hamiltonian can be mapped into 2 qubits, and thus can be
expressed as
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He =
∑

α,β=x,y,z

ν
(α,β)
1,2 σ

(α)
1 σ

(β)
2 , (4.7)

where σ(α)
i , α = x, y, z represents the Pauli matrix σα acting on qubit i. We choose molecules

of this type as the above Hamiltonian can be easily mapped into qubits that interact via an
homogeneus Ising model as in Eq. (4.1). For the two-qubit case, the homogeneous Ising model
reduces to

Hres = βZ1Z2, (4.8)

which we will treat as the resource Hamiltonian. This models, for example, the kind of interac-
tion arising in superconducting qubits [43, 44]. We study two two-qubit molecules: molecular
Hydrogen (H2) and the ion Helium Hydride (HeH+). These molecules are among the simplest
possible molecules to simulate, and have been widely studied in the context of quantum com-
puting [59, 62–64, 119, 120], making them a suitable choice for a first benchmark of the DAQC
approach for quantum chemistry.

In principle, both the H2 and the HeH+ molecules can be described by using 4 spin-orbitals,
and therefore 4 qubits are required to map the second-quantized Hamiltonian into a qubit
Hamiltonian. However, after mapping the Hamiltonian into qubit operators via the parity
mapping (Section 3.1.1) one may notice that the Hamiltonian terms act trivially on two of the
qubits. Therefore, the dimensionality of the problem can be reduced, converting the problem
into a two-qubit Hamiltonian, as described in [64, 119]. This technique is known as tapering
[121]. Using this reduction, the Hamiltonian for the H2 in the STO-3G basis is given by

HH2 = µ01+ µ1Z1 + µ2Z2 + µ3Z1Z2 + µ4X1X2, (4.9)

In the same STO-3G basis, the HeH+ Hamiltonian is given by

HHeH+ =ν01+ ν1Z1 + ν2Z2 + ν3Z1Z2 + ν3Z1Z2 + ν4X1+

ν5X1Z2 + ν6X1Z2 + ν7X2 + ν8Z1X2 + ν9X1X2.
(4.10)

The values of the coefficients are calculated by solving the one- and two-body integrals in Eq.
2.8, which we calculated using the Qiskit [109] and the PySCF [111] packages.
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4.3.1 Variational quantum eigensolver

We begin by benchmarking the DAQC approach with the Variational Quantum Eigensolver
(VQE) algorithm, where we aim to find ground state energy of the H2 and HeH+ as accurately as
possible. We choose the Unitary Coupled Cluster with Single and Double excitations (UCCSD)
ansatz to design the quantum circuit. As explained in Section 3.1.2, this ansatz requires to
implement the time evolution of the excitation operator U(θ⃗) = eT (θ⃗)−T †(θ⃗). For the H2 molecule,
the UCCSSD ansatz with the parity mapping is described by

U(θ)|HF⟩ = e−iθX1Y0|01⟩ (4.11)

where |HF⟩ = |01⟩ is the Hartree-Fock state fo H2. This ansatz is able to exactly describe the H2

ground state with only one variational parameter [63]. The above operator can be implemented
in a digital quantum computer as shown in Figure 4.1, where we denote eiσi

θ
2 = Ri(θ), with

σi, i = x, y, z being the Pauli matrices.

.

|0⟩ Ry(
π
2
) Ry(−π

2
)

|0⟩ Rx(
π
2
) Rz(t) Rx(

π
2
)

Figure 4.1: Digital circuit implementing the UCCSD-VQE ansatz for H2 molecule.

The same circuit can, on the other hand, be simulated via the ZZ-interaction in Eq. (??) by
realizing that the unitary eitZ1Z2 can be implemented via two CNOT gates and a parametrized
Z-rotation, as shown in Figure 4.2.

Rz(t)

Figure 4.2: Circuit implementing eitZ1Z2

The digital-analog circuit corresponding to the UCCSSD for the H2 molecule is given in Figure
4.3, where the two-qubit gates have been substituted by an analog block.

|0⟩ Ry(
π
2
)

eitZZ

Ry(−π
2
)

|0⟩ Rx(
π
2
) Rx(

π
2
)

Figure 4.3: Digital-analog circuit implementing the UCCSD-VQE ansatz for the H2 molecule.

To classically optimize the variational parameter we choose the Nelder-Mead optimizer [122,
123]. Figure (4.4) presents a comparison of the performance of the DAQC and the DQC
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Figure 4.4: Dissociation curve of H2 calculated through the digital (DQC) and digital-analog
(DAQC) VQE for the H2 molecule with the Unitary Coupled Cluster with Single and Double
excitations (UCCSD).

approaches for the UCCSD-VQE for the H2 molecule, with the noise model described in Section
4.2 with values SQGN=10−4, TQGN=ABN=10−3 and pF = 5 · 10−3. As expected, the DAQC-
VQE is more resilient to noise than its digital counterpart, giving energies closer to the exact
solution, and even reaching chemical accuracy for interatomic distances above the equilibrium
point at 0.74(A). The reason for the higher inaccuracy for distances below the equilibrium
distance is probably the high inestability of the system at those distances.

The UCCSD ansatz for the HeH+ molecule, also using the two-qubit tapering reduction, is the
same as for the H2 molecule

U(θ)|HF⟩ = e−iθX1Y0 |11⟩. (4.12)

Now the initial Hartree-Fock state corresponds to the state where both orbitals are occupied,
|HF⟩ = |11⟩. The results for the HeH+ are shown in Fig. 4.5, again showing a higher resistance
to noise for the DAQC approach.

4.3.2 Time dynamics

We now proceed to benchmark the DAQC and the DQC models in the context of time dynamics,
solving the time-dependent Schrödinger equation (2.2). The goal is to simulate the unitary time
operator U(t) = e−itH with the electronic Hamiltonians of H2 and HeH+ shown in Eq. (4.9)
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Figure 4.5: Comparison of the digital and digital-analog VQE for the HeH+ molecule with the
Unitary Coupled Cluster with Single and Double excitations (UCCSD). The energy is expressed
in Hartree units and the interatomic distance between the two protons in the molecule is
expressed of Amstrong (10−10m).

and Eq. (4.10), respectively. We will implement the time operator U(t) = e−itH via first-
order trotter product formula, as explained in Section 3.1.3. This is, we will approximate the
evolution of the Hamiltonians, which can expressed as H =

∑
j cjPj, being Pj Pauli strings, in

a series of discretized steps e−iHt ≈
(∏r

j=1 e
−icjPjt/nT

)nT

, with nT the number of trotter steps.
In the limit when nT → ∞, the previous approximation becomes exact.

For the H2 molecule, the first-order trotterized evolution is given by

U(t) = e−iHt = lim
nT→∞

(e
−iµ1Z1

t
nT e

−iµ2Z2
t

nT e
−iµ3Z1Z2

t
nT e

−iµ4X1X2
t

nT )nT . (4.13)

The above Hamiltonian can be simulated with access to the ZZ-interaction between the qubits in
Eq. (4.8) plus single-qubit gates. The first two terms e−iµ1Z1

t
nT and e−iµ2Z2

t
nT are simply single

qubit rotations around the Z-axis in the first and second qubits. The e−iµ4X1X2
t

nT term can
mapped into a eiZZt analog block via single qubit rotations, by realizing that e−iπ

4
YZei

π
4
Y = X.

We can then write

e−iπ
4
Y1e−iπ

4
Y2 e−iZ1Z2t ei

π
4
Y1ei

π
4
Y2 = e−iX1X2t (4.14)

which allows to map the trotterized evolution of the H2 molecule into single-qubit rotations
and analog blocks of ZZ-interactions. We show the corresponding circuit in Figure 4.6
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e−iµ1Zt

e−iµ3ZZt

e−iπ
4
Y

e−iµ4ZZt

ei
π
4
Y

e−iµ2Zt e−iπ
4
Y ei

π
4
Y

Figure 4.6: Digital-analog quantum circuit implementing a single trotter step for the H2

molecule.

On the other hand, the trotterized evolution in Eq. (4.13) can also be implemented via DQC,
with single-qubit rotations and two-qubit gates. We show an example of a digital quantum
circuit implementing a single trotter step of the equation above in Figure 4.7.

e−iµ1Zt e−iπ
4
Y ei

π
4
Y

e−iµ2Zt e−iµ3Zt e−iπ
4
Y e−iµ4Zt ei

π
4
Y

Figure 4.7: Digital quantum circuit implementing a single trotter step for the H2 molecule.

A comparison of the performance under the presence of noise of the DAQC and the DQC
approaches is shown in Fig. 4.8 for the H2. The figure of merit we use is the fidelity with
respect to the exact evolution

F (σexact, ρnoisy ) =

[
tr

(√√
σexactρnoisy

√
σexact

)]2
(4.15)

where σexact is the density matrix of the state after the evolution given by the exact operator
e−iHt, and ρnoisy the density state after the noisy DQC or DAQC circuit. We also show the
fidelity of the noiseless circuit, which is the same for both DQC and DAQC, as in this case
there exists an exact mapping between both. The fidelity is plotted as a function of the number
of trotter steps nT . In the noiseless case, the fidelity should increase monotonically with the
number nT . This increase is very subtle in Figure 4.8 since a single trotter step already gives
a very good approximation. The reason behind this is that the H2 Hamiltonian has only two
pairs of non-commuting terms, and since the error induced by the first-order trotter evolution
scales with the magnitude of the commutators between all possible terms, the accuracy of the
noiseless circuit is very high already with a single trotter step. When adding noise both in
the DQC and DAQC approach, the accumulation of error induce by adding more trotter steps
(and thus more gates) to the circuit is greater than the improvement in the accuracy of the
approximation for using more trotter steps.

An analogous procedure can be done to map the trotterized evolution of the HeH+ Hamiltonian
into a series of ZZ-analog blocks and single-qubit rotations. We plot the results for the HeH+

in Figure 4.9, again showcasing the increased resilience to noise of the DAQC approach. In
this case, the fidelity increases with the number of trotter steps for both the noiseless and the
DQC circuits, as the errors induced by adding more gates is well compensated by the higher
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Figure 4.8: Comparison of digital and digital-analog VQE with the Unitary Coupled Cluster
with Single and Double excitations (UCCSD). The Hamiltonian corresponds to the system at
the equilibrium point, with an interatomic distance of 0.74 A, and it was evolved for a total
time t = 4. The noise model pf = 10−3 and

accuracy of the formula for adding more trotter steps. This is not the case for the DQC circuit,
so for nT > 3 the fidelity starts to decrease due to the high level of noise.

One additional consideration is that turning on and off the analog interactions in the device
takes in practice a finite time, which induces a certain experimental error in the circuit. As
argued in previous work, an alternative approach is to not turn off the analog interactions,
which has been shown to be more efficient in some cases [35, 44, 117], as the error induced by
not turning off the analog interactions during the single qubit rotations was smaller than the
experimental error caused by the finite time of the turning on and off the interactions.

4.4 Generalization to larger molecules

So far, we have described how to simulate two-qubit molecules in the DAQC model. How-
ever, most of the molecules of interest for quantum computation require many qubits to be
modelled. Some strategies used to reduce the number of qubits is exploiting the symmetries
of the molecules [124, 125] or using efficient embeddings where only the most computation-
ally intensive tasks are done by the quantum computer [126, 127]. Howevever, these methods
still require the simulation of a highly non-local electronic Hamiltonian. The main challenge
towards a digital-analog simulation of larger molecules is the different locality of the native
Hamiltonian in the quantum devices, which is normally limited to local interactions, and the
non-local electronic Hamiltonian. One therefore needs to devise strategies to reduce the locality
of the Hamiltonians, so the problem can be mapped into the restricted connectivity quantum
devices available today. This problem also arises in quantum annealers, where it is commonly
solved using Hamiltonian gadgets [33, 48, 105].
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Figure 4.9: Digital vs digital-analog VQE with the Unitary Coupled Cluster with Single and
Double excitations (UCCSD). The Hamiltonian corresponds to the system at equilibrium point,
with an intermolecular distance d = 0.85, and it was evolved for a total time t = 4.

Hamiltonian gadgets, as described in Section 3.3.1, use auxiliary qubits to enlarge the Hilbert
space of the quantum device, such that the low-energy spectrum of the effective Hamiltonian of
the system simulates that of the target Hamiltonian. The main challenge towards reducing the
locality with Hamiltonian gadgets is the number of ancilla qubits required to map the electronic
Hamiltonian into a two-local Hamiltonian. Although the number of ancillas will depend on the
particular Hamiltonian gadget, here we look at the bit flip gadget described in Section 3.3.1.

Let us consider that the electronic Hamiltonian is described by a k-local Hamiltonian with r

terms, this is, H =
∑r

j=1 cjPj, with Pj being Pauli strings acting non-trivially in at most k
qubits. Then, the bit flip gadget requires rk auxiliary qubits to map the electronic Hamiltonian
into a 2-local Hamiltonian. In quantum chemistry, the number of terms in the electronic
Hamiltonian depends on the chosen orbital basis to map the second-quantized Hamiltonian.
Usual Gaussian orbitals give Hamiltonians with r ∝ O(N4) terms. In addition to that, the
average locality of the terms depends on the chosen fermion-to-qubit mapping. Even by using
the Bravyi-Kitaev mapping, which provides a locality k ∝ O(log(N)), the number of ancilla
qubits required scales as rk ∝ N4 log(N) with the number of orbitals. This is an unfeasible
requirement even for other medium size molecules. For instance, the molecule Lithium Hydride
(LiH) can be mapped (by exploiting symmetries) into a four-qubit Hamiltonian with 100 terms,
and thus would need the order of 400 qubits to be mapped into a local Hamiltonian. Reducing
the number of terms in the Hamiltonian would greatly reduce the ancilla qubit requirements.
In particular, work towards alternative choices of orbital basis other than the usual Gaussian-
type orbitals has showed a quadratic reduction in the number of Hamiltonian terms by using
plane-wave basis [50].

Another tool related to the idea of Hamiltonian gadget above are the so-called local fermion-
to-qubit mappings [128–132]. Local fermion-to-qubit mappings leverage the usual fermion-to-
qubit mappings, such as Jordan-Wigner or Bravyi-Kitaev, by using auxiliary qubits to reduce
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the locality of the resulting spin operators to which the fermionic operators are mapped. For
instance, the Cirac-Verstraete mapping [128] uses double the qubits as JW, but while JW maps
local fermionic operators to spin operators acting on O(N) qubits, the Cirac-Verstraete is able
to map local fermionic operators into local spin operators. More recent local fermion-to-qubit
mappings have been proposed, optimizing both the number of qubits required per fermionic
mode and the locality of the resulting spin operators [133].
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5
Conclusions and future outlook

In this thesis, we have reviewed the three main models of quantum computation - digital, analog
and adiabatic quantum computation - and how each of them can be applied to the specific case
of quantum chemistry. We have then described the recently proposed Digital-Analog Quantum
Computation model, which combines the universality of digital quantum computation with the
robustness against errors of analog quantum computation. The key idea of this approach is
to substitute the two-qubit gates in digital quantum circuits by blocks of analog evolution of
the natural interactions present in the device. We then have applied, for the first time to our
knowledge, the DAQC paradigm to the specific case of quantum chemistry by using two small
molecules as a first benchmark, molecular Hydrogen H2 and the Helium Hydride ion HeH+.

While the molecules treated here can be straightforwardly mapped into small, locally connected
quantum devices, this is not always the case, and one of the main challenges exploring DAQC
approaches for larger molecules remains the high-nonlocality of the electronic Hamiltonian. We
have discussed possible strategies to scale up the DAQC approach for larger molecules, and we
have seen how the Hamiltonian gadget discussed in this work poses unrealistic requirements in
the number of ancilla qubits needed to map the electronic Hamiltonian into a local Hamiltonian.

Further study of the strategies to reduce the locality of Hamiltonian gadgets for the specific
case of DAQC is therefore needed to benchmark the true capabilities of the DAQC paradigm for
quantum chemistry. Although in this work we have focused on the bit flip gadget, this gadget
requires a very high number of auxiliary qubits, which indicates that more efficient methods
to reduce the locality of the electronic Hamiltonian are needed. We hope this work serves as a
foundation for further investigations on the digital-analog approach for quantum chemistry.
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A
Computational complexity theory

In this Appendix, we aim to give a brief overview of computational complexity theory and its
most relevant consequences for quantum computational chemistry. Throughout this work, we
have argued that many systems of interest in quantum chemistry seem to be intractable with
classical computers. A natural question to ask is whether these problems are hard because
their inherent computational difficulty or whether because we have not yet been able to find
the suitable algorithms to solve them efficiently. Answering this question is crucial for the
development of new efficient algorithms, as well as to know what are the inherent limits of the
problems we are trying to solve. Computational complexity theory aims to shed light on these
issues by classifying the problems in different complexity classes [134].

In general, we say a problem is efficiently solvable if for an instance of size n, there exist an
algorithm that solves the problem with resources, such as time or space, scaling polynomially
with n. The most basic categories of complexity classes deal with decision problems, this
is, problems with a binary answer: "yes" or "no". If a decision problem is known to be
efficiently solvable in time with a classical computer, then we say it belongs to the P class,
which stands for deterministic polynomial time. The P class is a subclass of the more general
NP (non-deterministic polynomial time) class, which contains all the problems for which, given
a candidate solution, a classical computer can efficiently check if it is a solution. The question
of whether a problem whose solutions can be efficiently check can also be efficiently solvable,
P ?
=NP, remains unanswered and constitutes one of the most important open problems in

theoretical computer science. Another important class is NP-hard, which is defined as all
the problems that are at least as hard as the hardest problems in NP. Problems that are
both in NP and in NP-hard conform the computational class NP-complete. A problem being
NP-complete is a strong evidence that there is no efficient classical algorithm to solve it.
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Although the computational classes above refer to classical computation, a quantum counter-
part of those also exist. The complexity class BQP (bounded polynomial time) is the quantum
analog of P, this is, the set of problems that can be efficiently solved in quantum computer. In
the same way, the analog of NP is the computational class QMA (Quantum Merlin Arthur),
which refers to all problems such that, if given a candidate solution as a quantum state, a
quantum computer can efficiently verify if it is a solution. An important note is that com-
putational classes captures the worst-case hardness, and are not always representative of how
difficult a problem is in practice. Many problems that are known to be NP-complete have very
good heuristic algorithms that can approximate the solution to high accuracy efficiently. An
example of this is the Hartree-Fock (HF) method, which is known to be NP-complete [135].
However, heuristic methods exist that solve the HF method in many practical cases.

Figure A.1: Diagram summarizing the relationships between the different classical and quantum
complexity classes.

Coming back to the quantum chemistry case, finding the electronic ground state of the molecular
Hamiltonian (2.7) is an instance of the k-local Hamiltonian problem, which is known to be
QMA-complete [47]. This means that in principle, it is unlikely that quantum (or classical)
computers are able to exactly solve the electronic structure problem efficiently. Nevertheless,
as we mentioned before, this does not mean that we cannot get a computational advantage by
using quantum computers, and some heuristic methods like Variational Quantum Algorithms,
explained in Chapter 3.1.2, have gained some success. A major advantage of using quantum
computers is their ability to store the electronic wavefunction in the state of qubits, which in
most cases is already unfeasible with classical computers. On the other hand, there are some
problems in quantum chemistry that have been proved to be efficiently solved by quantum
computers, this is, to BQP problems. Most of these are related to the simulation of the
chemical time-dynamics [136, 137].
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