
Approximating ground states with free-fermionic states on a
quantum computer

Honours Programme Research Project

Author : Ignacio Fernández Graña
Supervisor : Jordi Tura i Brugués

Second examiner : Johannes Borregaard

Abstract

Approximating the ground state of quantum-many body systems is a central topic in a wide
range of fields. Quantum computing is thought to offer a substantial advantage tackling this prob-
lem relative to classical computers. We introduce two methods to approximately prepare the ground
state of a free-fermion Hamiltonian on a quantum computer. First, we propose an adaptative al-
gorithmic cooling method, where parametrized operators are sequentially applied and optimized to
monotonically decrease the energy of an initial state. Next, we design a more refined implemen-
tation inspired in a diagonalization algorithm for antisymmetric matrices, known as Paardekooper
algorithm, which significantly reduces the number of rotations required to prepare the ground state
for small system sizes. We numerically study both methods for small system sizes n and show
they can asymptotically reach the ground state in O(n2) operators. Finally, we go beyond the free-
fermion Hamiltonian and extend the algorithm to a model with a ground state that is manifestly
non-Gaussian, namely the Sachdev–Ye–Kitaev model.
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1 Introduction

The simulation of quantum many-body systems is a central topic in the field of condensed matter
and quantum chemistry. Unfortunately, simulating these systems with classical computers quickly
becomes intractable even for moderate system sizes, due to the exponential scaling of their Hilbert
space. On the other hand, quantum computers offer an exceptional platform for quantum many-body
system simulation [1, 2], providing an exponential save in memory cost. In particular, approximating
the ground state of such models has been identified as one of the key potential applications quantum
computing, as a wide range of interesting phenomena in physics happen at low energies. Preparing the
ground state of a Hamiltonian can be a difficult task- in fact, this problem is the paradigmatic example
of the QMA-complete complexity class, which is, roughly speaking, the analogue of NP-complete for
quantum computers [3]. Furthermore, ground states are also closely related to optimization tasks,
as the solution of many combinatorial problems can be naturally encoded in the ground state of a
Hamiltonian [4].

In this work we focus on a very simple quantum many-body model, namely a non-interacting
system of n fermions, also known as free-fermion systems. Free-fermion systems are known to be
exactly solvable in a efficient way [5], which allows us to numerically benchmark the methods proposed
in this work. We propose two methods to approximately prepare the ground state of a free-fermion
system in a quantum computer. The building block of the methods is an unitary operator that acts
on the fermionic space by inducing an orthogonal change of basis. More specifically, the matrix of this
change of basis is a 2D rotation known as a Givens rotation. As a consequence, this operators maps a
free-fermion Hamiltonian into another free-fermion Hamiltonian, which guarantees that the degree of
the Hamiltonian is preserved.

The first method uses a variational approach, where we randomly apply the Givens rotations
sequentially, optimizing the angle of the rotations so to minimize the energy at each step. This way,
the energy of the state is a monotonically decreasing function of time. Moreover, according to the
variational principle this function is lower bounded by the ground state energy, which guarantees
convergence within the parity subspace of the initial state. The convergence is limited to the parity
subspace of the initial state because the parity of a state remains invariant under the action of these
Givens rotations. We refer to this procedure as adaptative algorithmic cooling. There exist various
algorithmic cooling approaches, the most usual of which works by coupling the state to some ancillary
qubits that are repeatedly measured to extrac heat from the system [6, 7]. Our strategy does not require
any auxiliar qubits, and resembles that of adaptative quantum circuits [8, 9], where the structure and
length of the ansatze are not fixed. In our case, the quantum circuit grows one operator at a time
until the required accuracy is reached, although many variants of this idea are straightforward to
implement. This allows to greatly simplify the classical optimization of the ansatz parameters, as only
one parameter is optimized at a time. This is specially advantageous since the training of variational
algorithms is known to be NP hard in a wide variety of cases, including that of free fermions [10].

The second method is inspired by the use of Givens rotations in computational algebra algorithms.
Givens rotations are frequently used to perform matrix decompositions and to solve the eigenvalue prob-
lem of (anti-)symmetric matrices [11]. Our method is based on an algorithm, proposed by Paardekooper
[12], to semi-diagonalize antisymmetric matrices via similarity transformations using Givens rotations.
Paardekooper algorithm uses Givens rotations to iteratively annihilate the off-diagonal elements of the
matrix, bringing the matrix to a block diagonal form. This allows us to order the Givens rotations
through an algebraic mindset rather than randomly, resulting in a reduced number of rotations required
to achieve the ground state for small system sizes, in addition to avoid any classical optimization.

Finally, we show that the algorithmic cooling procedure can be extended to approximate the best
Gaussian state estimation of the ground state of more complex fermionic models. Gaussian states are
quantum states that are the ground state of a free-fermion Hamiltonian [13]. They are a central topic in
quantum many-body physics, and are known to provide a reasonable approximation for more complex
models [14]. Gaussian states are frequently used as a starting point to more refined algorithms- a
famous example are Slater determinants, which are a subset of Gaussian states, and are used in the
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Hartree-Fock state method in quantum chemistry [15]. In our case, we extend the algorithm to a
quantum many-body system that has a ground state which is manifeslty non-Gaussian [16], namely
the Sachdev–Ye–Kitaev (SYK) model. The SYK model describes 2n Majoranas with all to all random
interactions, where the magnitude of the interactions are normally distributed. The SYK model has
become an important tool for the study of quantum gravity as it is the simplest known example of
AdS/CFT duality [17–19]. The AdS/CFT (Anti-de Sitter/Conformal Field Theory) duality conjectures
the relationship between the physics of quantum many-body systems and the physics of gravity in
higher dimensions. Indeed, the SYK model is known to share common properties with the physics of
the near horizon region of near extremal black holes. It is also a primary platform in the study of
quantum chaos and scrambling of information [20–23], as the model is maximally chaotic yet amenable
to exact analyis in the large n limit. Extending our algorithm to the SYK model allows us to quantify
the non-Gaussianity of its ground state for small system sizes.

The numerical simulations of this work were implemented in Python 3.81. For the symbolic calcu-
lations in second quantization we used the Mathematica package SNEG [24].

This work is structured as follows. In Section 2 we review the free-fermion model and its exact
diagonalization. In Section 3 present the algorithms to approximately prepare the ground state of a
free-fermion Hamiltonian. In Section 4 we extend this method to provide a Gaussian approximation
of the SYK model. Finally, in Section 5 we conclude the work and discuss possible future outlooks.

2 Free-fermion model

A free-fermion model corresponds to a Hamiltonian of the form:

Ĥ =
∑

0≤i 6=j<n
Aij â

†
i âj +Bij âiâj + h.c., (1)

where Aij , Bij ∈ C and h.c. stands for hermitian conjugate. The operators âi(â
†
i ) are the annihilation

(creation) Dirac operators of a fermionic system with n modes. The annihilation operator âi acting on
the fermionic vacuum |Ω〉 satisfies âi|Ω〉 = 0 ∀i, while the creation operator â†i populates the i-th mode
â†i |Ω〉 = |1i〉. Dirac operators satisfy the following Canonical Anticommutation Relations (CARs):{

âi, â
†
j

}
= δi,j1̂, {âi, âj} = 0 ∀i, j , (2)

where δi,j stands for the Dirac delta function. The Hamiltonian described in equation (1) can also be
expressed in terms of Majorana fermions [5, 25]

Ĥ =
i

2

n−1∑
i,j=0

1∑
α,β=0

Hi,α;j,β ĉi,αĉj,β, (3)

where the 2n Majorana operators ĉi,α are defined as

ĉi,α = iα(âi + (−1)αâ†i ). (4)

The coupling matrix H is a 2n × 2n matrix with elements denoted by Hi,α;j,β. The indices i, j =
0, . . . n−1 index each of the 2×2 blocks of the matrix, while the indices α, β = 0, 1 index the elements
within each of the 2×2 blocks. Therefore, in the usual matrix notation, the elementHi,α;j,β corresponds
to the H2i+α,2j+β element, as shown in Figure 1.

Note that the Majorana operators satisfy the CARs

{ĉi,α, ĉj,β} = 2δα,βδi,j1̂. (5)
1The code is available at https://github.com/inafergra/VQA-Fermionic-Systems
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H =


H0,0;0,0 H0,0;0,1 . . . H0,0;n,0 H0,0;n,1

H0,1;0,0 H0,1;0,1 . . . H0,1;n,0 H0,1;n,1
...

...
. . .

...
...

Hn,0;0,0 Hn,0;0,1 . . . Hn,0;n,0 Hn,0;n,1

Hn,1;0,0 Hn,1;0,1 . . . Hn,1;n,0 Hn,1;n,1


Figure 1: Form of the matrix Hi,α;j,β.

We define the global parity operator P̂ as

P̂ :=

n−1∏
i=0

iĉi,0ĉi,1. (6)

Since [P̂, Ĥ] = 0, its ground state has a well defined parity p = ±1 given by the eigenvalue of P̂.
Thus, the Hilbert space is splitted in two subspaces with opposite parity, H = H+1⊕H−1. Intuitively,
the parity relates to the number of occupied Dirac modes in the system, and it will be even (p = +1)
if an even number of modes are occupied and odd (p = −1) if an odd number of modes are occupied.

2.1 Exact diagonalization

Free-fermion models are known to be exactly solvable [5]. The matrix H can be taken real antisym-
metric without loss of generality due to (5). By Darboux theorem [26], every real antisymmetric matrix
H admits a Williamson decomposition H = OJOT , where O ∈ O(2n) is an orthogonal transformation
and J is block diagonal:

J =
n−1⊕
k=0

(
0 εk
−εk 0

)
. (7)

Changing the sign of one of the ε’s corresponds to an inversion in the parity of Ĥ, as the determinant
of H will invert sign. The orthogonal transformation O is uniquely determined up to the signs of the
ε’s. This O induces a new set of Majorana operators {d̂k,γ}

d̂k,γ =
∑
iβ

Oi,β;k,γ ĉi,β (8)

that diagonalize the Hamiltonian

Ĥ = i
n−1∑
k=0

εkd̂k,0d̂k,1. (9)

Eq. (9) represents a diagonal Hamiltonian as the operators {id̂k,0d̂k,1} mutually commute. The
new operators {d̂k,γ} still satisfy the CARs in Eq. (5). The minimal eigenvalue E0 of Ĥ is given by

E0 =
n−1∑
k=0

skεk , (10)

achieved on a simultaneous eigenstate of all the operators {id̂k,0d̂k,1}, with respective eigenvalue
sk = −sign(εk) . The second energy level is given by E1 = E0 + 2 mink |εk|. In the non-degenerate
case, the matrix O can be found using the Spectral Theorem: since H = OTJO is antisymmetric, then
H2 is symmetric and diagonalizes as H2 = OTDO with D a diagonal matrix with eigenvalues −εk [5].
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3 Solving the free-fermion model

In this section we present two algorithms to approximately prepare the ground state of the free-fermion
Hamiltonian. We fist introduce the building blocks of the algorithms (Section 3.1) and show how to
map fermions into sping operators to implement the algorithms in a quantum computer (Section 3.2).
Next, we introduce the adaptative algorithmic cooling method (Section 3.3). We finalize the section
by presenting an algorithm based on an algorithm to semi-diagonalize antisymmetric matrices known
as Paardekooper algorithm (Section 3.4).

3.1 Givens rotations

The building blocks of our method are the operators corresponding to the time evolution of the indi-
vidual terms of the free-fermion Hamiltonian (3) iĉk,γ ĉl,δ, with k = 0, . . . , n− 1 and γ = 0, 1, i.e., the
time evolution operator is

Ĝ(k,γ;l,δ)(t) = ei(iĉk,γ ĉl,δ)t = e−ĉk,γ ĉl,δt, (11)

with k, l = 1 . . . n and γ, δ = 0, 1. From the CARs (5) it follows that the product ĉkγ ĉlδ is anti-
Hermitian, so the operator e−ĉk,γ ĉl,δt is unitary and represents a valid quantum operation.

In appendix A we show that the operator Ĝ(k,γ;l,δ)(t) acting on the Hilbert space of n fermionic
modes induces a change of basis(

Ĝ(k,γ;l,δ)(t)
)†
ĉi,α

(
Ĝ(k,γ;l,δ)(t)

)
=
∑
j,β

G
(k,γ;l,δ)
i,α;j,β (t)ĉj,β (12)

given by the rotation G(k,γ;l,δ)(t) ∈ SO(2n). We have denoted the operator Ĝ(k,γ;l,δ)(t) acting on the
fermionic Hibert space with a hat, and the associated rotation matrix G(k,γ;l,δ)(t) with no hat. The
Hamiltonian (3) transforms upon this change of basis as

(
Ĝ(k,γ;l,δ)(t)

)†
Ĥ
(
Ĝ(k,γ;l,δ)(t)

)
=

i

2

n−1∑
i,j=0

1∑
α,β=0

H ′i,α;j,β ĉiαĉjβ , (13)

so it can still be written as quadratic in Majorana operators, but with a different coupling matrix H ′

given by

H ′ =
(
G(k,γ;l,δ)(t)

)T
H
(
G(k,γ;l,δ)(t)

)
. (14)

The rotation G(k,γ;l,δ)(t) can be written in matrix notation (see appendix A) as

G(k,γ;l,δ)(t) =



1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · cos(2t) · · · sin(2t) · · · 0
...

...
. . .

...
...

0 · · · − sin(2t) · · · cos(2t) · · · 0
...

...
...

. . .
...

0 . . . 0 . . . 0 · · · 1


, (15)

where the diagonal elements are all 1 except from G
(k,γ;l,δ)
k,γ;k,γ (t) = G

(k,γ;l,δ)
l,δ;l,δ (t) = cos(2t) and the off-

diagonal elements are zero except from G
(k,γ;l,δ)
k,γ;l,δ (t) = −G(k,γ;l,δ)

l,δ;k,γ (t) = sin(2t). A matrix of this form is
known as a Givens rotation. The product

(
G(k,γ;l,δ)T (t)

)
H
(
G(k,γ;l,δ(t)

)
rotates the 2k + γ row of H

with the 2l + δ row and the 2k + γ column with the 2l + δ column by an angle 2t.

4



3.2 Implementation in a quantum computer

Here we briefly discuss how the operator Ĝ(k,γ;l,δ)(t) = e−ĉk,γ ĉl,δtcan be implemented in a quantum
circuit. The first step is to map the second-quantized fermionic operators to spin operators. This
mapping must be isospectral, i.e., the eigenspectrum of the operators must be conserved. Moreover,
an additional constraint needs to be taken account. As we saw before, different fermionic modes
anticommute (CARs 2), while spin operators on different sites commute. Thus, the mapping should
also preserve the fermionic CARs so that both formalisms are equivalent. A variety of such mappings
exist, but here we employ the famous Jordan-Wigner transformation, which maps a Majorana fermion
ĉk,γ into

ĉk,γ ↔ (−1)γ

k−1∏
j=0

σ(j)z

σ
(k)
x+γ , γ ∈ {0, 1}. (16)

where σjx, σjy, σjz the Pauli matrices acting on qubit j, and we denote x + 1 = y for short. The JW
transformation intuitively maps the (un)occupied k-th fermionic mode into the (|0〉)|1〉 computational
state of qubit k. This means n qubits are needed to map a system of n fermionic modes. According
to Eq. (17), the product iĉk,γ ĉl,δ is mapped into a Pauli string P acting non trivially in |k − l| qubit,
so the average length is O(n):

ĉk,γ ĉl,δ ↔ i(−1)δσ
(k)
x+1−γ

 l−1∏
j=k+1

σ(j)z

σ
(l)
x+δ, γ, δ ∈ {0, 1}, (17)

where we assumed, without loss of generality, that k < l. In other words, implementing e−ĉk,γ ĉjl,δt

requires implementing the exponential of a Pauli string eiP t, which can be efficiently simulated via
CNOT gates and single qubit rotations [1, 2, 27].

Let us illustrate this with an example. Take, for instance, the product ĉk,0ĉk+1,1, which is mapped
by (17) into iσ

(k)
x σ

(k+1)
x . The exponential e−ĉk,0ĉk+1,1 ↔ e−iσ

(k)
x σ

(k+1)
x can then be implemented by the

quantum circuit showed in Figure 2. This can be done in general for any product.

|0〉k H H

|0〉k+1 H Rz(2t) H

Figure 2: Quantum circuit implementing eitσ
(k)
x ⊗σ

(k+1)
x . H represents a Hadamard gate and Rz(t) =

eitσz/2 a rotation of t around the z axis.

3.3 Adaptative algorithmic cooling of the free-fermion model

As a first step, we apply the Givens rotations in a random order. We choose as an initial state the
fermionic vacuum |Ω〉, which according to the JW transformation (17) maps into the |0〉⊗n state in the
computational basis, i.e. |Ω〉 ↔ |0〉⊗n. We sequentially apply Givens rotations to fermionic vacuum
optimizing the angles tk of the rotations such that the energy is minimized after each rotation, as
shown in Figure 3. We refer to this procedure as adaptative algorithmic cooling. It is an adaptative
scheme as Givens rotations are applied until the desired accuracy is reached. We use the Nelder-Mead
optimizer [28] to optimize the angles. For the numerical simulations, the elements of the coupling
matrix H are drawn from a normal distribution N (0, 1). The indices of the rotations, (k, γ; l, δ), are
taken randomly, making sure that k 6= l and γ 6= δ to ensure the unitarity of the operator.

Since G(k,γ;l,δ)(t) ∈ SO(2n) is a rotation, the parity of the initial state, defined in Eq. (6), is
conserved by Ĝ(k,γ;l,δ)(t), and thus one cannot reach the ground state by only applying operators of
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. . .

. . .

. . .

. . .

. . .

|0〉

Ĝ2(t2)

≈ |Ψgs〉

|0〉

Ĝ1(t1)

ĜN (tN )

|0〉

ĜN−1(tN−1)|0〉

|0〉

Figure 3: Scheme of the algorithmic cooling procedure consisting on i = 1, . . . , N cooling operators.
Operators of the form Ĝi(ti) = Ĝ(ki,γi;li,δi)(ti) = e−ĉki,γi ĉli,δi ti are applied sequentially, and the times t
are optimized such that the energy decreases monotonically until the desired accuracy is reached. The
output state is then an approximation of the ground state |Ψgs〉.

this form if the initial state has a different parity than the ground state. Since one cannot predict the
parity of the ground state beforehand, this means the algorithm can get stuck and converge to the first
excited state instead of the ground state. This issue can easily be overcome by executing the algorithm
twice with initial states of opposite parity, e.g. |0〉⊗n (p = +1) and |1〉 ⊗ |0〉⊗n−1 (p = −1), which
will output the ground state and the first excited state. We can then pick the state with the lowest
energy as the ground state. We show typical runs of the algorithm in Figure 4 for a system n = 10.
The algorithm successfully converges to the ground state or the first excited state dependending on
the parity. Later in Section 3.5 we will further study the number of rotations needed to prepare the
ground state. It is also worth mentioning that, when implementing in a quantum circuit, the number
of measurements needed to achieve enough precision in the energy will increased more operators are
added. This is due to the fact that, when close to the ground state energy, the energy does not vary
much with each rotation, meaning that a high precision will be needed to keep track of the energy
variations, which translates in a large number of measurements.

3.4 Paardekooper-based algorithm

In the previous section we saw that we can "cool" a free-fermion model by sequentially applying Givens
rotations to drive the system to the ground state. As a first step, the plane on which the rotations
acted and the order on which the rotations were applied was determined by randomly choosing the four
indices (k, γ; l, δ) for each of the rotations. The angle of the rotation was then optimized to minimize
the energy.

A natural question is if a more optimal sequence of such rotations exists, such that the system can
be more effectively driven to the ground state using a reduced number of those rotations. In this work,
we take inspiration from computational algebra methods to answer this question. Givens rotations are
frequently used in computational algebra algorithms - for instance, they can be used to perform the
QR decomposition of a square matrix A = QR, where A is a square matrix, Q ∈ O(n) is orthogonal
and R is an upper triangular matrix. Jacobi-type algorithms make use Givens rotations to iteratively
diagonalize (2n × 2n) symmetric matrices [29, 30], requiring in general (2n − 1)(2n − 2)/2 rotations
(which can be greatly reduced if the matrix is sparse). Although the symmetric eigenvalue problem
is far more studied, similar ideas have been developped for the antisymmetric case as well [11], where
the goal is to bring an antisymmetric matrix to the Williamson form in (7).

The antisymmetric case will be the main focus of this section, as the coupling matrix H is anti-
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Figure 4: Two different runs of the algorithmic cooling of the free-fermion Hamiltonian of size n = 10
by applying Givens rotations. The initial state is the fermionic vacuum |Ω〉 = |0〉⊗n, which has a parity
p = +1. On the left, we show a run for an instance of the Hamiltonian where the ground state has
different parity (p = −1) to the initial state, and therefore it is not possible to reach the ground state
by only using Givens roations. The first excited state, which in this case has parity p = +1, is reached
instead. On the right, the ground state and the initial state both have parity p = +1, so the ground
state can be attained.

symmetric. To bring the system to the ground state (in fact, to any eigenstate), the matrix H must
be brought into the Williamson form (7), a procedure we refer as semi-diagonalization. In Section
2.1, we saw that the antisymmetric coupling matrix H of a free-fermion Hamiltonian can be brought
to a Williamson form by an orthogonal matrix O ∈ O(2n). This matrix O can be decomposed as a
sequence of Givens rotations O =

∏
iGi as long as O ∈ SO(2n), this is, as long as O is also a rotation.

If O is a reflection then this decomposition exclusively in terms of Givens rotations would no longer
be possible, and we would have to add a reflection term in the decomposition that changes the parity,
as we saw in the previous section in the case when the algorithmic cooling converged the first excited
state.

3.4.1 Paardekooper algorithm

Various algorithms exist to solve the antisymmetric eigenvalue problem [11]. The algorithm first
proposed by Paardekooper [12] brings an anti-symmetric matrix H to an (approximate) Williamson
form by repeatedly anhilitating 2×2 off-diagonal blocks of the original matrixH using Givens rotations.
Paardekooper algorithm aims to reduce the off-diagonal norm τ of the matrix

τ(H) =

√∑
i 6=j
‖Hij‖F , (18)

where Hij denotes each of the n(n−1) off-diagonal (2×2) blocks of H and ‖ ·‖F denotes Frobenius

norm, ‖Hi,j‖F =
√∑1

α=0

∑1
β=0 |Hi,α;j,β|2. A step of the algorithm consists of the orthogonal similarity

transformation
H ′ = P TpqHPpq (19)
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− − 22 23 14 15 2 3

− − 20 17 8 5
− − 18 19 6 7

− − 12 9
− − 10 11

− −
− −


Figure 5: Illustration of the pivot strategy used in this work, for an 8 × 8 matrix. The elements are
labeled according to the order they are zeroed-out. A single Givens rotations zeroes out one element.
Each color represents an off-diagonal 2 × 2 block, which is annhilated by a Jacobi annihilator. Since
H is antisymmetric and we apply similarity transformations of the type GHGT , the lower-triangular
part of the matrix is zeroed out simultaneously with the upper part.

which zeroes out the off-diagonal blocks Hpq and Hpq, since the H is antisymmetric. The matrix Ppq is
referred to as the Jacobi annihilator of the 2× 2 Hpq, and it consists of 4 successive Givens rotations

Ppq = G(p,0;q,0) (t1/2) ·G(p,1;q,1) (t2/2) ·G(p,0;q,1) (t3/2) ·G(p,1;q,0) (t4/2) (20)

The angles ti, i = 1...4 are presented in appendix B. The main idea of the algorithm is to run over
all the 2 × 2 off-diagonal blocks Hpq of the matrix H, applying the respective Jacobi annihilator Ppq
in order to reduce the off-diagonal norm τ(H). The algorithm would be straightforward if the only
action of the Jacobi annhilator Ppq would be to zero out the Hpq block. Unfortunately, this is not the
case as the Givens rotations will rotate the entire columns and rows contained in the Hpq block. In
order words, as we move through the matrix zeroing out the 2× 2 blocks we will also fill in previously
created zeroes. Therefore, in general we will need to iteratively run through the whole matrix more
than once . We refer as a run through all of the blocks Hpq as a sweep, and denote the number of
sweeps used as j.

After annihilating the off-diagonal block Hpq, τ(H) is reduced by

τ(H)2 → τ(H)2 − 2 · ||Hpq||F (21)

which garantees that τ → 0 when the number of sweeps j tends to infinity.

A final step is to establish pivot strategy that sets the order in which the 2×2 blocks are annihilated.
The convergence and performance of the algorithm depends on the considered strategy. The current
best strategy is the one proposed in [31], providing a cubic convergence under certain conditions. In
this work, we employ a naive pivot strategy going column by column, as shown in Figure 5.

Once we have set a pivot strategy, Paardekooper algorithm provides a matrix Ω representing a
sweep of the algorithm. Iterating this sweep j times gives rise to a matrix we denote

U
(j)
paard =

j∏
r=1

Ωr . (22)

After applying this operator j times, the norm of the off-diagonal blocks of the coefficients, τ(H),
will be reduced. For j →∞, this norm tends to zero so the operator U (∞) will semi-diagonalize H,(

U
(∞)T
paard

)
H
(
U

(∞)
paard

)
=

n−1⊕
k=0

(
0 εk
−εk 0

)
(23)

this is, in the limit j → ∞, U (j) is equivalent to the orthogonal matrix O used in the Williamson
decomposition (7). By equivalent we mean that the ε’s in in the Williamson form are equal up to their
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sign. For finite j, the output state of the algorithm, |Φ〉out, is approximately an eigenstate of the Ĥ.
It is important to note that we do not have any control over which of the eigenstates is the final state,
as this depends on the signs of the εk after the diagonalization (recall that the transformation O is
unique up to the choice of the signs of εk). If we are interested in a particular eigenstate of the system,
for instance the ground state, we must do some additional work that allows us to drive any arbitrary
eigenstate to the ground state. This is done in the next section.

3.4.2 Greedy algorithm

Once the coupling matrix is in (approximate) Williamson form, it means that we have transformed
the initial state into an (approximate) arbitrary eigenstate of the system. In order to get to the
ground state, we use Givens rotations of the form G(k,γ;k+m,δ)(t = π

2 ) = G(π2 ), with k = 0, . . . n − 1,
m = 0, . . . , n− k − 1 and γ, δ = 0, 1 has the form

G(k,γ;k+m,δ)
(π

2

)
=



1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · −1 · · · 0 · · · 0
...

...
. . .

...
...

0 · · · 0 · · · −1 · · · 0
...

...
...

. . .
...

0 . . . 0 . . . 0 · · · 1


(24)

with G(k,γ;k+m,δ)
k,γ;k,γ (π2 ) = G

(k,γ;k+m,δ)
k+m,δ;k+m,δ(

π
2 ) = −1. The only action of acting on the coupling matrix as

G(k,γ;k+m,δ)(π2 )THG(k,γ;k+m,δ)(π2 ), is to invert the sign of a number of εk in the diagonal blocks of H.
Specifically, the columns and rows corresponding to the k-th and (k + m)-th blocks will invert sign.
Using this kind of Givens rotations, we can devise a greedy-type algorithm where we apply rotations of
this type only if the energy is reduced. Recall that the ground energy (10) is achieved if the signs are
such that . A scheme of the algorithm is depicted in Algorithm 1. This methods converges to either
the ground state (if the initial state has the same parity as the ground state) or to the first excited
state otherwise. As we mentioned in the case of the algorithmic cooling, the solution is again to repeat
the algorithm twice with initial states of different parity, picking as a ground state the one with the
lowest energy.

Applying Paardekooper algorithm followed by the greedy algorithm successfully achieves the ground
state of the free-fermion Hamiltonian, again if the parity of the ground state and the initial state are
the same. We refer to this method as the Paardekooper-based algorithm.

3.5 Numerical results

In Figure 6 we show the number of Givens rotations needed to achieve an energy error |E −
Eexact|/Eexact smaller than 1% for both the algorithmic cooling and the Paardekooper-based algorithm.
We plot the results in a loglog scale to visually display the polynomial scaling. We perform a polynomial
fit, showcasing that in both cases the number of rotations scales almost quadratically. Specifically,the
algorithmic cooling scales as O(1.81n1.92), while Paardekooper algorithm scales as O(0.67n2.12). Thus,
for small sytem size n Paardekooper algorithm is more efficient due to the smaller multiplicative
coefficient in the scaling (0.67 < 1.81). Nevertheless, the scaling exponent is smaller in the algorithmic
cooling case (1.92 < 2.12), hence for large n the algorithmic cooling will require less rotations. It is
interesting to see that the heuristics of the algorithmic cooling is more efficient than the Paardekooper
algorithm for large sizes. Specifically, the polynomial fits shows that Paardekooper is more efficient
only for sizes n < 284.
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Algorithm 1 Greedy algorithm
1: #Begin with H in Williamson form
2: E = Energy(H)
3: for k ← 0 to 2n− 1 do
4: for m← 0 to 2n− k − 1 do
5: for a, b← 0 to 1 do
6: G = GivensRotation(k; k +m;π/2)

H ′ = GTHG
E′ = Energy(H ′)

7: if E′ < E then
8: H = H ′

E = E′

9: end if
10: end for
11: end for
12: end for

The number of Givens rotations used in the Paardekooper-based algorithm is calculated as 4jn(n−
1)/2 + S, where j is the number of sweeps used and n the number of fermionic Dirac modes in the
system, as there are n(n − 1)/2 independent 2 × 2 off-diagonal blocks in the matrix and it takes 4
Givens rotations to zero each of them out. S is the number of Givens applied in the greedy algorithm,
which is dependent on the eigenstate in which we end up after semi-diagonalizing the matrix.

4 Gaussian approximation of the SYK model

So far, both algorithms presented in the previous section have been proved to successfully approximately
prepare the ground state of a free-fermion Hamiltonian, as long as the initial state is in the parity
subspace of the ground state. Ground states of such Hamiltonians are known in the literature as
Gaussian states and can be formally defined as follows [14]. Let Ur be an unitary operator acting on
the Hilbert space of N Majorana modes as

(Ûr)
†ĉi,α(Ûr) =

∑
j,β

Ri,α;j,β ĉj,β (25)

with R ∈ O(n) an orthogonal matrix. Then, a state |ψ〉 is Gaussian if it can be written as |ψ〉 = Ûr|Ω〉,
with |Ω〉 being the fermionic vacuum. We note that the unitary Ûr is completely determined by the
matrix R up to the phase. Looking back to Eq. (37), we notice that the building block of our algorithm,
the operator Ĝ(t), corresponds to the special case of Ur when R is a Givens rotation. This means that
by using operators Ĝ(t) we are restricted to transformations of the type (25) where R has determinant
+1, and therefore the final state of the algorithms is restricted to the subspace of Gaussian states that
lie in the same parity subspace than the initial state.

In this section we review how the adaptative algorithmic cooling procedure proposed in this work
can be be extended to yield a Gaussian state approximation to the ground state of other fermionic
models apart from free-fermion. We use the Sachdev–Ye–Kitaev (SYK) model as a testbed [17]. The
SYK model has recently drawn a considerable amount of attention since it was proposed as a dual
model for particular quantum theories of gravity [18, 19]. Digital [32, 33] and analog [34] quantum
simulations of the SYK model have been proposed.

In [16], strong evidence was presented showing that the approximation ratio to the ground state
energy of Gaussian states for the SYK model, r = EGauss/Eexact, goes to zero for increasing system
size: r → 0 for n → ∞. In other words, this means that the difference between the exact ground
energy and the best Gaussian approximation to the ground state energy will tend to infinite as the

10



Figure 6: In red, the average number of Givens rotations needed to achieve an energy error |E −
Eexact|/Eexact ≤ 1% in the free-fermion Hamiltonian when applying the Givens rotations randomly
(algorithmic cooling explained in Section 3.3). In green, the average number of Givens rotations
required to achieve the same energy error when using Paardekooper-based algorithm, followed by the
Greedy algorithm to drive the system to the ground state. Each point was calculated as the average
was taken over 25 disorder realizations of the Hamiltonian. The results are fitted to a polynomial
function, showing that the number of Givens rotations scales almost quadratically in both cases. The
fit reveals that the Paardekooper-based algorithm is consistently more efficient n smaller than ≈ 284.

system size increases. The ground state of the SYK model is therefore, in some way, as non-Gaussian
as it can be. This motivates the extension of the algorithmic cooling to the SYK model as a way to
quantitive measure its non-Gaussianity, as we numerically show that no meaningful approximation of
the ground state can be achieved via Gaussian transformations.

The SYK model is a system of 2n Majorana fermions with all possible four body interactions:

ĤSY K =
n−1∑

i1...i4=0

1∑
α1...α4=0

Ji1,α1;...;i4,α4 ĉi1,α1 ĉi2,α2 ĉi3,α3 ĉi4,α4 , (26)

where ĉi,α are Majorana fermions defined in Eq. (43). The couplings Ji1,α1;...;i4,α4 are drawn randomly
from a Gaussian distribution N (1, 3!J2/(2n)3), and satisfy the proper antisymmetrization conditions
according to the Majorana’s CARs in Eq. (5) and to ensure the hermiticity of the Hamiltonian.

To avoid dealing with many indices, in this section we will rewrite the pair of indices (i, α), with
i = 0, . . . , n− 1 and α = 0, 1, used in the previous sections to index the Majorana fermions, as a single
index i = 0, . . . , 2n− 1 such that i = 2i+ α:

ĤSY K =
2n−1∑

i,j,k,l=0

Ji,j,k,l ĉiĉjĉkĉl . (27)

4.1 Adaptative algorithmic cooling of the SYK model

We extend here the adaptative algorithmic cooling presented in Section 3.3 to the SYK model. The
Paardekooper-based algorithm proposed in Section 3.4 does not have a trivial extension to the SYK
model, as now the couplings are stored in a 4-tensor Ji,j,k,l, instead of a matrix that can be semi-
diagonalized (although work in tensor diagonalization could be serve as a basis to extend the algorithm,
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Figure 7: Tensor diagram representing the transformation in Eq. (29). Circles represent tensors while
lines represent indices. A line connecting two circles means that the index is contracted between both
tensors. Lines only connected to one circle stand for free indices.

as we will comment later). Using an analog approach to that shown in appendix A it is straightforward
to see how the operator Ĝ(j1,j2)(t) = e−ĉj1 ĉj2 t transforms the Hamiltonian ĤSY K as

(
Ĝ(j1,j2)(t)

)†
ĤSY K

(
Ĝ(j1,j2)(t)

)
=

2n−1∑
i,j,k,l=0

J ′i,j,k,l ĉiĉjĉkĉl, (28)

with the new coupling tensor J ′(t) given by

J ′i,j,k,l =
∑

m,n,o,p
Jm,n,o,p (G(j1;j2))i,m(G(j1;j2))j,n(G(j1;j2))k,o(G(j1;j2))l,p , (29)

where G(j1;j2) is a Givens rotation as shown in Eq. (24). A tensor diagram representing the index
contractions in Eq. (29) is shown in Figure 7.

In Figure 8 we show typical runs of the algorithm for systems sizes n = 3, 4, 5, 6. Note that a
system with n fermionic (Dirac) modes is represented by 2n Majorana modes. We also show the
average approximation ratio to the ground state energy r for each of the sizes. The approximation
ratio is lower as the system size increases, in line with the results in [16]. Only for the smallest size
n = 3, the algorithm converges to the ground state due to the small number of free parameters at this
size. As expected, the number of Givens rotations for the algorithmic cooling needed to converge also
scales worse than in the free-fermion case. In particular, for the SYK model it scales roughly as O(n4),
corresponding with the number of free parameters in the coupling tensor. This is shown in Figure 9.

Let us now reflect on why the SYK Hamiltonian cannot be driven to ground the state through
transformations of the type (29). In the free-fermion case, the coupling matrix H could be semi-
diagonalized by the Williamson decomposition H = OTJO, where J is block diagonal of the form in
Eq. (7). The matrix is an orthogonal rotation O ∈ O(2n), and therefore this O could be decomposed
(up to parity) in Givens rotations, as Givens rotations are also orthogonal. Once the coupling matrix
was in a block diagonal form, we had full information about the spectrum.

It is reasonable to ask if there is an analogue procedure for the SYK model. In the SYK model
the couplings are now expressed as a 4-order tensor instead of a matrix, which already poses the first
challenge: what does it mean to diagonalize a tensor? Turns out that this question has given rise to
a recent line of research that extends concepts of matrix diagonalization to higher order tensors [35,
36]. The fact that the ground state of the SYK model is not a Gaussian state means that the tensor
bringing J to a diagonal form (whatever diagonalizing the SYK tensor J means), i.e. the analog of O
in the free-fermion case, is not odeco (orthogonally decomposable) [37]. A n × n × . . . × n(d times)
tensor Ti1,...,id is odeco iff we can write T =

∑r
i=1 λiv

⊗d
i , where v1, . . . , vn ∈ Rn. In practice, the fact
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Figure 8: In each plot we show a specific run of the adaptative algorithmic cooling of the SYK
Hamiltonian for system sizes n = 3, 4, 5, 6. For each system size we show the average approximation
ratio to the ground state raverage = Ecooling/Eexact, averaged over 15 disorder realizations.

that the coupling tensor of the SYK model is not odeco means that to diagonalize the SYK model, a
more general type of transformation on the tensor J than (29) has to be considered. Further research
on what kind of transformations diagonalize the SYK Hamiltonian could indicate in what direction
the operators need to be generalized.

5 Conclusions

In this work, we have shown how to achieve the ground state of a free-fermion Hamiltonian using
operators that act on the coupling matrix of the Hamiltonian as Givens rotations. We have done
so first with a variational approach, by applying the operators in an adaptative algorithmic cooling
approach. Next we have used Paardekooper semi-diagonalization algorithm for antisymmetric matrices
to reduce the number of Givens rotations required to reach the ground state. We have numerically
shown that Paardekooper algorithm is more efficient in the number of rotations for n < 284. Last,
we have extended the randomized algorithmic cooling to the SYK model and seen how it provides a
Gaussian state approximation of the ground state, allowing us to quantify the non-Gaussianity of its
ground state for small n.

Let us conclude by indicating some future outlooks of this work. In the free fermions setting, an
interesting extension would be to combine both of the proposed approaches, by adding a variational
part to the Paardekooper-based algorithm. For instance, adding parametrized operators of the type
e−ĉk,0ĉk+1,1 , which we have seen that correspond to spin operators of the type e−iσ

(k)
x σ

(k+1)
x , and optimiz-

ing such that the energy or the variance are minimized. This would likely help to reduce the number
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Figure 9: The number of givens rotations required for the algorithmic cooling to converge in the SYK
scales roughly as O(n4), like the number of free parameters in the coupling tensor Ji,j,k,l. The results
shown are taken over an average of 5 disorder realizations. Sizes larger than 6 fermions were not
numerically tractable.

of sweeps needed in Paardekooper algorithm, effectively reducing the depth of the circuit.
Last, the family of operators used in the algorithms could be extended to provide other type of

transformations apart from Givens rotations. In the free fermions case, it would be particularly useful
to find transformations that translate into some type of reflections, which would allow us to invert
the parity throughout the algorithms. In the SYK case, further research on tensor diagonalization
could provide suggestions into how to generalize the transformations, as discussed in Section 4. The
algorithms described here could also be used to provide Gaussian approximations to other fermionic
models.
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A Evolution of the hamiltonian under Ĝ

Acting with the operator Ĝ(t) ≡ Ĝ(k,γ;l,δ)(t) = e−ĉk,γ ĉl,δt on the Hilbert space of n fermionic modes
translates into the Hamiltonian Ĥ evolving as(

Ĝ(t)
)†
Ĥ
(
Ĝ(t)

)
=

i

2

n−1∑
i,j=0

1∑
α,β=0

Hi,α;j,β e
ĉk,γ ĉl,δtĉi,αe

−ĉk,γ ĉl,δteĉk,γ ĉl,δtĉj,βe
−ĉk,γ ĉl,δt =

=
i

2

n−1∑
i,j=0

1∑
α,β=0

Hi,α;j,βf
(k,γ;l,δ)
i,α (t)f

(k,γ;l,δ)†
j,β (t)

(30)

where we have used that Ĝ(t) is unitary a, Ĝ†(t)Ĝ(t) = 1, and we have renamed eĉk,γ ĉl,δt ˆci,αe
−ĉk,γ ĉl,δt =

f
(k,γ;l,δ)
i,α (t). The above expression can be expressed in a vectorized form as follows:

Ĝ†ĤĜ =
i

2
~f †(t)H ~f(t) =

i

2
~c TH ′~c (31)

where ~f(t) is a vector containing the elements of the new Majorana basis {f̂i,α} and ~c represents the
original Majorana fermion basis {ĉj,β}.

It follows that the derivative of this operator {f̂i,α} with respect to time is

∂

∂t
f
(k,γ;l,δ)
i,α (t) = e−ĉk,γ ĉl,δt[ĉi,α, ĉk,γ ĉl,δ]e

ĉk,γ ĉl,δt . (32)

Using the CARs (5) one gets

[ĉi,α, ĉk,γ ĉl,δ] = 2(δi,lδα,δ ĉk,γ − δi,kδα,γ ĉl,δ) (33)

where δ represents Dirac delta function. Therefore

∂

∂t
f
(k,γ;l,δ)
i,α (t) = 2

(
δi,lδα,δf̂

(k,γ;l,δ)
k,γ (t)− δi,kδα,γ f̂

(k,γ;l,δ)
l,δ (t)

)
=
∑
r,σ

A
(k,γ;l,δ)
i,α;r,σ f (k,γ;l,δ)r,σ (t)(t) (34)

The above equation can be also expressed in vectorial form as:

~̇f(t) = A(k,γ;l,δ) ~f(t) (35)

where A(k,γ;l,δ) is an antisymmetric matrix with only two non zero elements, A(k,γ;l,δ)
k,γ;l,δ = −2 and

A
(k,γ;l,δ)
l,δ;k,γ = 2. Eq. (35) is an ODE that can be solved by setting the initial condition ~f(0) = ~c, and has

the solution
~f(t) =

(
eA

(k,γ;l,δ)t
)
~c . (36)

or in index form: (
Ĝ(k,γ;l,δ)(t)

)
ĉi,α

(
Ĝ(k,γ;l,δ)†(t)

)
=
∑
j,β

(
eA

(k,γ;l,δ)t
i,α;j,β

)
ĉj,β (37)

Coming back to equation (31), we can express the transformation induced by Ĝ(t) as the coupling
matrix H transforming as

H ′ =
(
e−A

(k,γ;l,δ)t
)
H
(
eA

(k,γ;l,δ)t
)
. (38)

Since the matrix A ≡ A(k,γ;l,δ) is a 2n× 2n is antisymmetric with only two non-zero elements ±2,
A has eigenvalues ±2i and 0. Therefore the minimum polynomial, by the Cayley-Hamilton theorem,
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is A(A2 + 41) = 0, which means that we can write A3 = −4A and truncate the Taylor expansion at
second order:

eAt =
∞∑
n=0

tn

n!
An = 1+ tA+

t2

2!
A2 +

t3

3!
A3 +

t4

4!
A4 +

t5

5!
A5 + · · · =

= 1+ tA+
t2

2!
A2 +

t3

3!
(−4)A+

t4

4!
(−4)A2 +

t5

5!
(−4)2A+ · · · =

= 1+A

(
t+

t3

3!
(−4) +

t5

5!
(−4)2 + . . .

)
+A2

(
t2

2!
+
t4

4!
(−4)A2 + . . .

)
=

= 1+A

∞∑
n=0

(−4)n
t2n+1

(2n+ 1)!
+A2(−1

4
)

∞∑
n=1

(−4)n
t2n

(2n)!
=

= 1+A
1

2

∞∑
n=0

(−1)n
(2t)2n+1

(2n+ 1)!
−A2 1

4

∞∑
n=1

(−1)n
(2t)2n

(2n)!
=

= 1+
sin 2t

2
A− cos 2t− 1

4
A2

(39)

We now rename eA(k,γ;l,δ)t = G(k,γ;l,δ)(t) explicitly note that this matrix represents a Givens rotation.
Indeed, in matrix notation we can write

G(k,γ;l,δ)(t) =



1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · cos(2t) · · · sin(2t) · · · 0
...

...
. . .

...
...

0 · · · − sin(2t) · · · cos(2t) · · · 0
...

...
...

. . .
...

0 . . . 0 . . . 0 · · · 1


, (40)

where the diagonal elements are all 1 except from G
(k,γ;l,δ)
k,γ;k,γ = G

(k,γ;l,δ)
l,δ;l,δ = cos(2t) and the off-diagonal

elements are zero except from G
(k,γ;l,δ)
k,γ;l,δ = −G(k,γ;l,δ)

l,δ;k,γ = sin(2t). As explained in the main text, this is
a rotation matrix known as Givens rotation.

B Angle formulas for Paardekooper algorithm

Here we write down the angle formulas for the Jacobi annihilator in Paardekooper algorithm, as
explained in [31]. Using simplified notation

Hpp =

[
0 α
−α 0

]
, Hpq =

[
x v
w y

]
, Hqq =

[
0 β
−β 0

]
the angle formulas are for t1 ∈ (−π/4, π/4]

tan 2t1 =
2(αw − βv)

α2 − β2 + v2 − w2

and for t2 ∈ (−π/2, π/2]

tan t2 =

{
− c1v−s1β
c1α+s1w

, c1α+ s1w 6= 0

− c1w−s1α
c1β+s1v

, c1β + s1v 6= 0
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Here c1 = cos t1 and s1 = sin t1. The first two angles have been chosen to annihilate v and w. Note
that x and y have not changed. Suppose that Hpp, Hpq and Hqq are transformed by the first two
rotations into

H̃pp =

[
0 α̃
−α̃ 0

]
, Ĥpq =

[
x 0
0 y

]
, H̃qq =

[
0 β̃

−β̃ 0

]
.

The angles t3 ∈ (−π/4, π/4] and t4 ∈ (−π/2, π/2] are computed from the requirement that x and y
become zero, which yields

tan 2t3 = 2(α̃y+β̃x)

α̃2−β̃2+x2−y2

tan t4 =

{
− c3x+s3β̃
c3α̃+s3y

, c3α̃+ s3y 6= 0
c3y−s3α̃
c3β̃−s3x

, c3β̃ − s3x 6= 0

where c3 = cos t3 and s3 = sin t3.

C Numerical calculation of the energy

Throughout this work, the numerical calculations were done in the second quantized formalism. Here
we explain how we computed the energy of the free fermion Hamiltonian (3) and the SYK Hamiltonian
(26). These energies are always taken with respect to the fermionic vacuum |Ω〉 with respect to the
original Hamiltonian configuration.

C.1 Vacuum energy of free fermions

The energy in the free-fermion case is
E = 〈Ω|Ĥ|Ω〉 , (41)

with Ĥ given by

Ĥ =
i

2

n−1∑
i,j=0

1∑
α,β=0

Hi,α;j,β ĉi,αĉj,β . (42)

By using that a Majorana operator can be expressed as

ĉi,α = iα(âi + (−1)αâ†i ) (43)

in terms of Dirac operators, where i is the imaginary unit, and that Dirac operators act on the number
state basis as ak|Ω〉 = 0 and a†k|Ω〉 = |1k〉, we can write

ĉl,αĉk,β|Ω〉 =

{
iα+β(−1)β|Ω〉 if l = k

iα+β(−1)α+β â†l â
†
k|Ω〉 if l 6= k

(44)

When applying 〈Ω| from the left, only the terms with l = k survive and we have:

E = 〈Ω|Ĥ|Ω〉 =
i

2

∑
l,α;k,β

Hl,α;k,β〈Ω|ĉlαĉkβ|Ω〉 =
i

2

∑
l,α,β

Hl,α;l,β · iα+β(−1)β (45)

i.e., sum over the elements of the middle diagonal blocks of H. Using that H is antisymmetric,
Hl,α;k,β = −Hk,β;l,α so:

Hl,α;l,β = −Hl,β;l,α (46)

Then the diagonal terms with α = β, Hl,0;l,0 and Hl,1;l,1, vanish, and we only have left:

E =
1

2

∑
l

(Hl,0;l,1 −Hl,1;l,0) = −
∑
l

Hl,1;l,0 (47)

which is the sum of the bottom-left terms in each of the diagonal (2× 2) blocks of the H matrix.
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C.2 Vacuum energy of the SYK

For the SYK Hamiltonian the derivation is analogue to the free fermions:

E0 = 〈Ω|ĤSY K |Ω〉 =

2n−1∑
i1,i2,i3,i4=0

Ji1,i2,i3,i4〈Ω|ĉi1 ĉi2 ĉi3 ĉi4Ω〉, (48)

where

〈Ω|ĉi1 ĉi2 ĉi3 ĉi4 |Ω〉 =

= 〈Ω|ĉi1,α1 ĉi2,α2 ĉi3,α3 ĉi4,α4 |Ω〉
= iα1+α2+α3+α4

(
(−1)α3+α4(δi1,i4δi2,i3 − δi1,i4δi2,i3) + (−1)α2+α4δi1,i2δi3,i4

)
.

(49)
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